A note on a conjecture for the distance Laplacian matrix

In this note, the graphs of order n having the largest distance Laplacian eigenvalue of multiplicity n ?2 are characterized. In particular, it is shown that if the largest eigenvalue of the distance Laplacian matrix of a connected graph G of order n has multiplicity n ? 2, then G = S_n or G = K_(p,p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic Journal of Linear Algebra 2016-02, Vol.31 (1), p.60-68
Hauptverfasser: Marques da Silva, Celso, Raposo Del-Vecchio, Renata, Aguieiras Alvarez de Freitas, Maria
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this note, the graphs of order n having the largest distance Laplacian eigenvalue of multiplicity n ?2 are characterized. In particular, it is shown that if the largest eigenvalue of the distance Laplacian matrix of a connected graph G of order n has multiplicity n ? 2, then G = S_n or G = K_(p,p), where n = 2p. This resolves a conjecture proposed by M. Aouchiche and P. Hansen in [M. Aouchiche and P. Hansen. A Laplacian for the distance matrix of a graph. Czechoslovak Mathematical Journal, 64(3):751–761, 2014.]. Moreover, it is proved that if G has P_5 as an induced subgraph then the multiplicity of the largest eigenvalue of the distance Laplacian matrix of G is less than n ? 3.
ISSN:1081-3810
1081-3810
DOI:10.13001/1081-3810.3002