On the distance from a weakly normal matrix polynomial to matrix polynomials with a prescribed multiple eigenvalue

Consider an$n\times n matrix polynomial P(\lambda). An upper bound for a spectral norm distance from P(\lambda) to the set of n \times n matrix polynomials that have a given scalar ? in C as a multiple eigenvalue was obtained by Papathanasiou and Psarrakos (2008). This paper concerns a refinement of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic Journal of Linear Algebra 2016-02, Vol.31 (1), p.71-86
Hauptverfasser: Loghmani, G.B, Kokabifar, E, Psarrakos, Panayiotis
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Consider an$n\times n matrix polynomial P(\lambda). An upper bound for a spectral norm distance from P(\lambda) to the set of n \times n matrix polynomials that have a given scalar ? in C as a multiple eigenvalue was obtained by Papathanasiou and Psarrakos (2008). This paper concerns a refinement of this result for the case of weakly normal matrix polynomials. A modified method is developed and its efficiency is verified by two illustrative examples. The proposed methodology can also be applied to general matrix polynomials.
ISSN:1081-3810
1081-3810
DOI:10.13001/1081-3810.2921