On the maximal angle between copositive matrices
Hiriart-Urruty and Seeger have posed the problem of finding the maximal possible angle ?_{max}(C_n) between two copositive matrices of order n [J.-B. Hiriart-Urruty and A. Seeger. A variational approach to copositive matrices. SIAM Rev., 52:593629, 2010.]. They have proved that ?_{max}(C_2) = (3/4)...
Gespeichert in:
Veröffentlicht in: | Electronic Journal of Linear Algebra 2014-12, Vol.27 (1) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hiriart-Urruty and Seeger have posed the problem of finding the maximal possible angle ?_{max}(C_n) between two copositive matrices of order n [J.-B. Hiriart-Urruty and A. Seeger. A variational approach to copositive matrices. SIAM Rev., 52:593629, 2010.]. They have proved that ?_{max}(C_2) = (3/4)pi and conjectured that ?_{max}(C_n) is equal to (3/4)pi for all n ? 2. In this note, their conjecture is disproven by showing that lim_{n??} ?_{max}(C_n) = pi. The proof uses a construction from algebraic graph theory. The related problem of finding the maximal angle between a nonnegative matrix and a positive semidefinite matrix of the same order is considered in this paper. |
---|---|
ISSN: | 1081-3810 1081-3810 |
DOI: | 10.13001/1081-3810.2842 |