On the maximal angle between copositive matrices

Hiriart-Urruty and Seeger have posed the problem of finding the maximal possible angle ?_{max}(C_n) between two copositive matrices of order n [J.-B. Hiriart-Urruty and A. Seeger. A variational approach to copositive matrices. SIAM Rev., 52:593–629, 2010.]. They have proved that ?_{max}(C_2) = (3/4)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic Journal of Linear Algebra 2014-12, Vol.27 (1)
Hauptverfasser: Goldberg, Felix, Shaked-Monderer, Naomi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hiriart-Urruty and Seeger have posed the problem of finding the maximal possible angle ?_{max}(C_n) between two copositive matrices of order n [J.-B. Hiriart-Urruty and A. Seeger. A variational approach to copositive matrices. SIAM Rev., 52:593–629, 2010.]. They have proved that ?_{max}(C_2) = (3/4)pi and conjectured that ?_{max}(C_n) is equal to (3/4)pi for all n ? 2. In this note, their conjecture is disproven by showing that lim_{n??} ?_{max}(C_n) = pi. The proof uses a construction from algebraic graph theory. The related problem of finding the maximal angle between a nonnegative matrix and a positive semidefinite matrix of the same order is considered in this paper.
ISSN:1081-3810
1081-3810
DOI:10.13001/1081-3810.2842