A priori bounds for rough differential equations with a non-linear damping term

We consider a rough differential equation with a non-linear damping drift term: dY(t)=−|Y|m−1Y(t)dt+σ(Y(t))dX(t), where X is a branched rough path of arbitrary regularity α>0, m>1 and where σ is smooth and satisfies an m and α-dependent growth property. We show a strong a priori bound for Y, w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Differential Equations 2022-05, Vol.318 (2), p.58-93
Hauptverfasser: Bonnefoi, Timothée, Moinat, Augustin, Weber, Hendrik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a rough differential equation with a non-linear damping drift term: dY(t)=−|Y|m−1Y(t)dt+σ(Y(t))dX(t), where X is a branched rough path of arbitrary regularity α>0, m>1 and where σ is smooth and satisfies an m and α-dependent growth property. We show a strong a priori bound for Y, which includes the "coming down from infinity" property, i.e. the bound on Y(t) for a fixed t>0 holds uniformly over all choices of initial datum Y(0). The method of proof builds on recent work by Chandra, Moinat and Weber on a priori bounds for the ϕ4 SPDE in arbitrary subcritical dimension. A key new ingredient is an extension of the algebraic framework which permits to derive an estimate on higher order conditions of a coherent controlled rough path in terms of the regularity condition at lowest level.
ISSN:0022-0396
1090-2732
DOI:10.1016/j.jde.2022.02.006