A priori bounds for rough differential equations with a non-linear damping term
We consider a rough differential equation with a non-linear damping drift term: dY(t)=−|Y|m−1Y(t)dt+σ(Y(t))dX(t), where X is a branched rough path of arbitrary regularity α>0, m>1 and where σ is smooth and satisfies an m and α-dependent growth property. We show a strong a priori bound for Y, w...
Gespeichert in:
Veröffentlicht in: | Journal of Differential Equations 2022-05, Vol.318 (2), p.58-93 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a rough differential equation with a non-linear damping drift term: dY(t)=−|Y|m−1Y(t)dt+σ(Y(t))dX(t), where X is a branched rough path of arbitrary regularity α>0, m>1 and where σ is smooth and satisfies an m and α-dependent growth property. We show a strong a priori bound for Y, which includes the "coming down from infinity" property, i.e. the bound on Y(t) for a fixed t>0 holds uniformly over all choices of initial datum Y(0). The method of proof builds on recent work by Chandra, Moinat and Weber on a priori bounds for the ϕ4 SPDE in arbitrary subcritical dimension. A key new ingredient is an extension of the algebraic framework which permits to derive an estimate on higher order conditions of a coherent controlled rough path in terms of the regularity condition at lowest level. |
---|---|
ISSN: | 0022-0396 1090-2732 |
DOI: | 10.1016/j.jde.2022.02.006 |