Atomic Insights into Aluminium-Ion Insertion in Defective Anatase for Batteries

Aluminium batteries constitute a safe and sustainable high–energy-density electrochemical energy-storage solution. Viable Al-ion batteries require suitable electrode materials that can readily intercalate high-charge Al3+ ions. Here, we investigate the Al3+ intercalation chemistry of anatase TiO2 an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2020-10, Vol.59 (43), p.19247-19253
Hauptverfasser: Legein, Christophe, Morgan, Benjamin, Fayon, Franck, Koketsu, Toshinari, Ma, Jiwei, Body, Monique, Sarou-Kanian, Vincent, Wei, Xiankui, Heggen, Marc, Borkiewicz, Olaf, Strasser, Peter, Dambournet, Damien
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aluminium batteries constitute a safe and sustainable high–energy-density electrochemical energy-storage solution. Viable Al-ion batteries require suitable electrode materials that can readily intercalate high-charge Al3+ ions. Here, we investigate the Al3+ intercalation chemistry of anatase TiO2 and how chemical modifications influence the accommodation of Al3+ ions. We use fluoride- and hydroxide-doping to generate high concentrations of titanium vacancies. The coexistence of these hetero-anions and titanium vacancies leads to a complex insertion mechanism, attributed to three distinct types of host sites: native interstitials sites, single vacancy sites, and paired vacancy sites. We demonstrate that Al3+ induces a strong local distortion within the modified TiO2 structure, which affects the insertion properties of the neighbouring host sites. Overall, specific structural features induced by the intercalation of highly-polarizing Al3+ ions should be considered when designing new electrode materials for multivalent batteries.
ISSN:0044-8249
1521-3757
1521-3757
DOI:10.1002/anie.202007983