Negative Poisson’s ratio polyethylene matrix and 0.5BaCa0.8Zr0.2O3-0.5Ba0.7Ca0.3TiO3 based piezocomposite for sensing and energy harvesting applications

Finite element studies were conducted on 0.5Ba(Zr0.2 Ti0.8) O3-0.5(Ba0.7 Ca0.3)TiO3 (BCZT) piezoelectric particles embedded in polyethylene matrix to create a piezocomposite having a positive and negative Poisson's ratio of -0.32 and 0.2. Polyethylene with a positive Poisson's ratio is ref...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2022-12, Vol.12 (1), Article 22610
Hauptverfasser: Karmakar, Saptarshi, Kiran, Raj, Bowen, Chris, Vaish, Rahul, Singh Chauhan, Vishal, Mufarreh Elqahtani, Zainab, Ben Ahmed, Samia, Al-Buriahi, M. S., Kumar, Anuruddh, Hyun Sung, Tae
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Finite element studies were conducted on 0.5Ba(Zr0.2 Ti0.8) O3-0.5(Ba0.7 Ca0.3)TiO3 (BCZT) piezoelectric particles embedded in polyethylene matrix to create a piezocomposite having a positive and negative Poisson's ratio of -0.32 and 0.2. Polyethylene with a positive Poisson's ratio is referred to as non-auxetic while those with negative Poisson's ratio are referred to as auxetic or inherently auxetic. The effective elastic and piezoelectric properties were calculated at volume fractions of (4%, 8% to 24%) to study their sensing and harvesting performance. This study compared lead-free auxetic 0-3 piezocomposite for sensing and energy harvesting with non-auxetic one. Inherently auxetic piezocomposites have been studied for their elastic and piezoelectric properties and improved mechanical coupling, but their sensing and energy harvesting capabilities and behavior patterns have not been explored in previous literatures. The effect of Poisson's ratio ranging between -0.9 to 0.4 on the sensing and energy harvesting performance of an inherently auxetic lead free piezocomposite composite with BCZT inclusions has also not been studied before, motivating the author to conduct the present study. Auxetic piezocomposite demonstrated an overall improvement in performance in terms of higher sensing voltage and harvested power. The study was repeated at a constant volume fraction of 24% for a range of Poisson's ratio varied between -0.9 to 0.4. Enhanced performance was observed at the extreme negative end of the Poisson's ratio spectrum. This paper demonstrates the potential improvements by exploiting auxetic matrices in future piezocomposite sensors and energy harvesters.
ISSN:2073-4360
2073-4360
DOI:10.1038/s41598-022-26834-3