Mapping the flux penetration profile in a 2G-HTS tape at the microscopic scale: deviations from a classical critical state model

Understanding vortex behaviour at microscopic scales is of extreme importance for the development of higher performance coated conductors with larger critical currents. Here, we study and map the critical state in a YBCO-based coated conductor at different temperatures using two distinct operation m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Superconductor Science and Technology 2019-02, Vol.32 (2), Article 025009
Hauptverfasser: Marchiori Pereira, Estefani, Bending, Simon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Understanding vortex behaviour at microscopic scales is of extreme importance for the development of higher performance coated conductors with larger critical currents. Here, we study and map the critical state in a YBCO-based coated conductor at different temperatures using two distinct operation modes of scanning Hall microscopy. An analytical Bean critical state model for long superconducting strips is compared with our measurements and used to estimate the critical current density. We find several striking deviations from the model; pronounced flux front roughening is observed as the temperature is reduced below 83 K due to vortex-bundle formation when strong broadening of the flux front profile is also seen. In higher magnetic fields at the lower temperature of 65 K, fishtail-like magnetization peaks observed in local magnetization measurements are attributed to flux-locking due to an increase in the critical current density near the edges of the tape, which we tentatively link to vortex pinning matching effects. Our measurements provide valuable insights into the rich vortex phenomena present in coated conductor tapes at the microscopic scale.
ISSN:0953-2048
1361-6668
DOI:10.1088/1361-6668/aaf2f5