Interface Dynamics in Semilinear Wave Equations

We consider the wave equation ε2(-∂t2+Δ)u+f(u)=0 for 0 < ε≪ 1 , where f is the derivative of a balanced, double-well potential, the model case being f(u) = u- u3. For equations of this form, we construct solutions that exhibit an interface of thickness O(ε) that separates regions where the soluti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in Mathematical Physics 2020-02, Vol.373, p.971-1009
Hauptverfasser: Jerrard, Robert L., Musso, Monica
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the wave equation ε2(-∂t2+Δ)u+f(u)=0 for 0 < ε≪ 1 , where f is the derivative of a balanced, double-well potential, the model case being f(u) = u- u3. For equations of this form, we construct solutions that exhibit an interface of thickness O(ε) that separates regions where the solution is O(εk) close to ± 1 , for k≥ 1 , and that is close to a timelike hypersurface of vanishing Minkowskian mean curvature. This provides a Minkowskian analog of the numerous results that connect the Euclidean Allen–Cahn equation and minimal surfaces or the parabolic Allen–Cahn equation and motion by mean curvature. Compared to earlier results of the same character, we develop a new constructive approach that applies to a larger class of nonlinearities and yields much more precise information about the solutions under consideration.
ISSN:1432-0916
0010-3616
1432-0916
DOI:10.1007/s00220-019-03632-z