On the critical threshold for continuum AB percolation

Consider a bipartite random geometric graph on the union of two independent homogeneous Poisson point processes in d-space, with distance parameter r and intensities λ,μ. For any λ>0 we consider the percolation threshold μc(λ) associated to the parameter μ. Denoting by λc the percolation threshol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Applied Probability 2018-12, p.1228-1237
Hauptverfasser: Dereudre, David, Penrose, Mathew
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Consider a bipartite random geometric graph on the union of two independent homogeneous Poisson point processes in d-space, with distance parameter r and intensities λ,μ. For any λ>0 we consider the percolation threshold μc(λ) associated to the parameter μ. Denoting by λc the percolation threshold for the standard Poisson Boolean model with radii r, we show the lower bound μc(λ)≥clog(c/(λ-λc)) for any λ>λc with c>0 a fixed constant. In particular, there is no phase transition in μ at the critical value of λ, that is, μc(λc) =∞.
ISSN:0021-9002
1475-6072
DOI:10.1017/jpr.2018.81