Continuous Level Monte Carlo and Sample-Adaptive Model Hierarchies

In this paper, we present a generalization of the multilevel Monte Carlo (MLMC) method to a setting where the level parameter is a continuous variable. This continuous level Monte Carlo (CLMC) estimator provides a natural framework in PDE applications to adapt the model hierarchy to each sample. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM/ASA Journal on Uncertainty Quantification 2019-12, Vol.7 (1), p.93-116
Hauptverfasser: Detommaso, Gianluca, Dodwell, Tim, Scheichl, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present a generalization of the multilevel Monte Carlo (MLMC) method to a setting where the level parameter is a continuous variable. This continuous level Monte Carlo (CLMC) estimator provides a natural framework in PDE applications to adapt the model hierarchy to each sample. In addition, it can be made unbiased with respect to the expected value of the true quantity of interest provided the quantity of interest converges sufficiently fast. The practical implementation of the CLMC estimator is based on interpolating actual evaluations of the quantity of interest at a finite number of resolutions. As our new level parameter, we use the logarithm of a goal-oriented finite element error estimator for the accuracy of the quantity of interest. We prove the unbiasedness, as well as a complexity theorem that shows the same rate of complexity for CLMC as for MLMC. Finally, we provide some numerical evidence to support our theoretical results, by successfully testing CLMC on a standard PDE test problem. The numerical experiments demonstrate clear gains for samplewise adaptive refinement strategies over uniform refinements.
ISSN:2166-2525
2166-2525
DOI:10.1137/18M1172259