A Critical Assessment of Stellar Mass Measurement Methods

This is the second paper in a series aimed at investigating the main sources of uncertainty in measuring the observable parameters in galaxies from their spectral energy distributions (SEDs). In the first paper we presented a detailed account of the photometric redshift measurements and an error ana...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astrophysical Journal 2015-07, Vol.808 (1)
Hauptverfasser: Mobasher, Bahram, Dahlen, Tomas, Ferguson, Henry C., Acquaviva, V., Barro, Guillermo, Finkelstein, Steven L., Fontana, Adriano, Gruetzbauch, Ruth, Johnson, Seth, Lu, Yu, Papovich, Casey J., Pforr, Janine, Somerville, Rachel S., Wiklind, Tommy, Wuyts, S., Ashby, Matthew L. N., Bell, Eric, Conselice, Christopher J., Dickinson, Mark E., Faber, Sandra M., Fazio, Giovanni, Finlator, Kristian, Galametz, Audrey, Gawiser, Eric, Giavalisco, Mauro, Grazian, Andrea, Grogin, Norman A., Guo, Yicheng, Hathi, Nimish, Kocevski, Dale, Koekemoer, Anton M., Koo, David C., Newman, Jeffrey A., Reddy, Naveen, Santini, Paola, Wechsler, Risa H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This is the second paper in a series aimed at investigating the main sources of uncertainty in measuring the observable parameters in galaxies from their spectral energy distributions (SEDs). In the first paper we presented a detailed account of the photometric redshift measurements and an error analysis of this process. In this paper we perform a comprehensive study of the main sources of random and systematic error in stellar mass estimates for galaxies, and their relative contributions to the associated error budget. Since there is no prior knowledge of the stellar mass of galaxies (unlike their photometric redshifts), we use mock galaxy catalogs with simulated multi-waveband photometry and known redshift, stellar mass, age and extinction for individual galaxies. The multi-waveband photometry for the simulated galaxies were generated in 13 filters spanning from U-band to mid-infrared wavelengths. Given different parameters affecting stellar mass measurement (photometric signal-to-noise ratios (S/N), SED fitting errors and systematic effects), the inherent degeneracies and correlated errors, we formulated different simulated galaxy catalogs to quantify these effects individually. For comparison, we also generated catalogs based on observed photometric data of real galaxies in the Great Observatories Origins Deep Survey-South field, spanning the same passbands. The simulated and observed catalogs were provided to a number of teams within the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey collaboration to estimate the stellar masses for individual galaxies. A total of 11 teams participated, with different combinations of stellar mass measurement codes/methods, population synthesis models, star formation histories, extinction and age. For each simulated galaxy, the differences between the input stellar masses, Minput, and those estimated by each team, Mest, is defined as ${\rm{\Delta }}\mathrm{log}(M)\equiv \mathrm{log}({M}_{\mathrm{estimated}})-\mathrm{log}({M}_{\mathrm{input}})$, and used to identify the most fundamental parameters affecting stellar mass estimate in galaxies, with the following results. (1) No significant bias in Δ log(M) was found among different codes, with all having comparable scatter ($\sigma ({\rm{\Delta }}\mathrm{log}(M))=0.136$ dex). The estimated stellar mass values are seriously affected by low photometric S/N, with the rms scatter increasing for galaxies with ${H}_{\mathrm{AB}}\gt 26$ mag; (2) A source of error
ISSN:0004-637X
1538-4357
1538-4357
DOI:10.1088/0004-637X/808/1/101