On (n+1/2)-Engel groups
Let n be a positive integer. We say that a group G is an (n+1/2)-Engel group if it satisfies the law [ x, y n, x ] = 1. The variety of (n+1/2)-Engel groups lies between the varieties of n-Engel groups and (n+1) -Engel groups. In this paper, we study these groups, and in particular, we prove that all...
Gespeichert in:
Veröffentlicht in: | Journal of Group Theory 2020-05, Vol.23 (3), p.503-511 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let n be a positive integer. We say that a group G is an (n+1/2)-Engel group if it satisfies the law [ x, y n, x ] = 1. The variety of (n+1/2)-Engel groups lies between the varieties of n-Engel groups and (n+1) -Engel groups. In this paper, we study these groups, and in particular, we prove that all (4+1/2)-Engel-groups are locally nilpotent. We also show that if G is a (4+1/2)-Engel p-group, where p ≥ 5 is a prime, then Gp is locally nilpotent. |
---|---|
ISSN: | 1433-5883 1435-4446 |
DOI: | 10.1515/jgth-2019-0105 |