Inhibition Delay Increases Neural Network Capacity through Stirling Transform

Inhibitory neural networks are found to encode high volumes of information through delayed inhibition. We show that inhibition delay increases storage capacity through a Stirling transform of the minimum capacity which stabilizes locally coherent oscillations. We obtain both the exact and asymptotic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical Review E 2018-03, Vol.97 (3), p.1-4, Article 030301(R)
Hauptverfasser: Nogaret, Alain, King, Alastair
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Inhibitory neural networks are found to encode high volumes of information through delayed inhibition. We show that inhibition delay increases storage capacity through a Stirling transform of the minimum capacity which stabilizes locally coherent oscillations. We obtain both the exact and asymptotic formulas for the total number of dynamic attractors. Our results predict a (ln2)-N-fold increase in capacity for an N-neuron network and demonstrate high-density associative memories which host a maximum number of oscillations in analog neural devices.
ISSN:2470-0053
1539-3755
2470-0053
DOI:10.1103/PhysRevE.97.030301