0D Modeling of Dry-Electrical Discharge Machining Plasma Discharge1

There is a growing interest in developing the dry electrical discharge machining (EDM) process as a sustainable alternative to the conventional liquid dielectric-based EDM process. It is shown that the dry EDM process possesses advantages over the conventional process in terms of thermal damage, rec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of micro and nano-manufacturing 2023-03, Vol.11 (1)
Hauptverfasser: Mujumdar, Soham, Bayki, Shayan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There is a growing interest in developing the dry electrical discharge machining (EDM) process as a sustainable alternative to the conventional liquid dielectric-based EDM process. It is shown that the dry EDM process possesses advantages over the conventional process in terms of thermal damage, recast layer, and tool wear. However, there is a need to increase the productivity of the dry EDM process for its successful adaptation in the industry. This paper presents a dry EDM plasma discharge model with air as the dielectric medium. The model uses global modeling (0D) approach in which equations of mass balance, energy balance, and plasma expansion are solved simultaneously to obtain a time-dependent description of the plasma in terms of its composition, temperature, diameter, and heat flux to electrodes. The model includes reaction kinetics involving 622 reactions and 55 species to determine the air plasma composition. A single discharge dry EDM operation is successfully simulated using the model, and the effects of the interelectrode gap and discharge current on the plasma are studied. An increase in the interelectrode gap decreases the average electron density, plasma temperature, and heat flux. On the other hand, an increase in the discharge current increases the electron density, temperature, and diameter of the plasma linearly, while heat flux to the workpiece increases exponentially. Overall, the model provides an essential tool to study the dry EDM process mechanisms at a fundamental level and devise methods for process improvements.
ISSN:2166-0468
2166-0476
DOI:10.1115/1.4064105