Microlocal analysis and precise spectral asymptotics

The problem of spectral asymptotics, in particular the problem of the asymptotic dis- tribution of eigenvalues, is one of the central problems in the spectral theory of partial differential operators; moreover, it is very important for the general theory of partial differential operators. I started...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Ivrii, Victor
Format: Buch
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The problem of spectral asymptotics, in particular the problem of the asymptotic dis- tribution of eigenvalues, is one of the central problems in the spectral theory of partial differential operators; moreover, it is very important for the general theory of partial differential operators. I started working in this domain in 1979 after R. Seeley found a remainder estimate of the same order as the then hypothetical second term for the Laplacian in domains with boundary, and M. Shubin and B. M. Levitan suggested that I should try to prove Weyl's conjecture. During the past fifteen years I have not left the topic, although I had such intentions in 1985 when the methods I invented seemed to fai! to provide furt her progress and only a couple of not very exciting problems remained to be solved. However, at that time I made the step toward local semiclassical spectral asymptotics and rescaling, and new horizons opened.