The Language of Self-Avoiding Walks: Connective Constants of Quasi-Transitive Graphs
The connective constant of a quasi-transitive infinite graph is a measure for the asymptotic growth rate of the number of self-avoiding walks of length n from a given starting vertex. On edge-labelled graphs the formal language of self-avoiding walks is generated by a formal grammar, which can be us...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The connective constant of a quasi-transitive infinite graph is a measure for the asymptotic growth rate of the number of self-avoiding walks of length n from a given starting vertex. On edge-labelled graphs the formal language of self-avoiding walks is generated by a formal grammar, which can be used to calculate the connective constant of the graph. Christian Lindorfer discusses the methods in some examples, including the infinite ladder-graph and the sandwich of two regular infinite trees. |
---|---|
ISSN: | 2625-3577 2625-3615 |
DOI: | 10.1007/978-3-658-24764-5 |