Advancements in Knowledge Distillation: Towards New Horizons of Intelligent Systems
The book provides a timely coverage of the paradigm of knowledge distillation-an efficient way of model compression. Knowledge distillation is positioned in a general setting of transfer learning, which effectively learns a lightweight student model from a large teacher model. The book covers a vari...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The book provides a timely coverage of the paradigm of knowledge distillation-an efficient way of model compression. Knowledge distillation is positioned in a general setting of transfer learning, which effectively learns a lightweight student model from a large teacher model. The book covers a variety of training schemes, teacher-student architectures, and distillation algorithms. The book covers a wealth of topics including recent developments in vision and language learning, relational architectures, multi-task learning, and representative applications to image processing, computer vision, edge intelligence, and autonomous systems. The book is of relevance to a broad audience including researchers and practitioners active in the area of machine learning and pursuing fundamental and applied research in the area of advanced learning paradigms. |
---|---|
ISSN: | 1860-949X 1860-9503 |
DOI: | 10.1007/978-3-031-32095-8 |