Quantum Mechanics of One- and Two-Electron Atoms
Units.- I. The Hydrogen Atom Without External Fields.- a) Nonrelativistic theory.- 1. Separation of Schrödinger's equation in spherical polar coordinates. Angularly dependent eigenfunctions and the angular momentum matrix.- 2. Derivation of Balmer's formula.- 3. The radial eigenfunctions o...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Units.- I. The Hydrogen Atom Without External Fields.- a) Nonrelativistic theory.- 1. Separation of Schrödinger's equation in spherical polar coordinates. Angularly dependent eigenfunctions and the angular momentum matrix.- 2. Derivation of Balmer's formula.- 3. The radial eigenfunctions of the discrete spectrum.- 4. The eigenfunctions of the continuous spectrum.- 5. Motion of the nucleus.- 6. Separation of Schrödinger's equation in parabolic coordinates.- 7. Methods for the continuous spectrum for a general central potential.- 8. Wave functions in momentum space. Discrete spectrum.- 9. Wave functions in momentum space. Continuous spectrum.- b) Dirac theory.- 10. General properties of the Dirac theory.- 11. Angular momentum.- 12. Pauli theory of the spin-electron.- 13. Pauli theory for a central potential.- 14. The exact solution of the Dirac equation.- 15. Dirac equation. Continuous spectrum.- 16. The Dirac equation in momentum space.- 17. The fine structure formula.- c) Radiative and other corrections.- 18. Radiative corrections. S-matrix theory.- 19. Radiative corrections. Bound states.- 20. Corrections for nuclear motion and structure.- 21. Fine structure and the Lamb shift.- 22. Hyperfine structure splitting.- 23. The fine structure of positronium.- II. The Helium Atom without External Fields.- a) Nonrelativistic theory.- 24. The Schrödinger equation for helium (symmetry).- 25. Discussion of variation and perturbation methods.- 26. Level scheme of helium.- 27. Survey of approximations to be used.- 28. First order Heisenberg's method (excited states).- 29. Polarization for excited states.- 30. Fock's method (excited S-states).- 31. Hartree's method.- 32. Ritz variation method (helium ground state).- 33. Ground state of helium-like ions with arbitrary Z.- 34. The negative hydrogen ion.- 35. Variation method for excited states.- 36.
Miscellaneous calculations I.- 37. Motion of the nucleus.- b) Relativistic theory.- 38. Discussion of the Breit equation.- 39. The Pauli approximation (low Z).- 40. Fine structure splitting of helium.- 41. Relativistc corrections for the ground state.- 42. Breit equation without external field.- 43. Treatment for large Z.- 44. Hyperfine structure.- III. Atoms in External Fields.- a) Zeeman effect.- 45. Zeeman effect for a single-electron atom.- 46. Dependence on magnetic field strength.- 47. Some corrections to the Zeeman effect.- 48. Extension to many-electron atoms.- 49. Comparison with precision experiments.- 50. The diama |
---|