Incomplete Categorical Data Design: Non-Randomized Response Techniques for Sensitive Questions in Surveys

A self-contained, systematic introduction, this book shows you how to draw valid statistical inferences from survey data with sensitive characteristics. It guides you in applying the non-randomized response approach in surveys and new non-randomized response designs. The techniques covered integrate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Tian, Guo-Liang
Format: Buch
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A self-contained, systematic introduction, this book shows you how to draw valid statistical inferences from survey data with sensitive characteristics. It guides you in applying the non-randomized response approach in surveys and new non-randomized response designs. The techniques covered integrate the strengths of existing approaches, including randomized response models, incomplete categorical data design, the EM algorithm, the bootstrap method, and the data augmentation algorithm. All R codes for the examples are available online.