What Can Gauge-Gravity Duality Teach Us About Condensed Matter Physics?

I discuss the impact of gauge-gravity duality on our understanding of two classes of systems: conformal quantum matter and compressible quantum matter. The first conformal class includes systems, such as the boson Hubbard model in two spatial dimensions, which display quantum critical points describ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annual review of condensed matter physics 2012-01, Vol.3 (1), p.9-33
1. Verfasser: Sachdev, Subir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:I discuss the impact of gauge-gravity duality on our understanding of two classes of systems: conformal quantum matter and compressible quantum matter. The first conformal class includes systems, such as the boson Hubbard model in two spatial dimensions, which display quantum critical points described by conformal field theories. Questions associated with nonzero temperature dynamics and transport are difficult to answer using conventional field-theoretic methods. I argue that many of these can be addressed systematically using gauge-gravity duality and discuss the prospects for reliable computation of low-frequency correlations. Compressible quantum matter is characterized by the smooth dependence of the charge density, associated with a global U(1) symmetry, upon a chemical potential. Familiar examples are solids, superfluids, and Fermi liquids, but there are more exotic possibilities involving deconfined phases of gauge fields in the presence of Fermi surfaces. I survey the compressible systems studied using gauge-gravity duality and discuss their relationship to the condensed matter classification of such states. The gravity methods offer hope of a deeper understanding of exotic and strongly coupled compressible quantum states.
ISSN:1947-5454
1947-5462
DOI:10.1146/annurev-conmatphys-020911-125141