Machine Learning and the Digital Measurement of Psychological Health

Since its inception, the discipline of psychology has utilized empirical epistemology and mathematical methodologies to infer psychological functioning from direct observation. As new challenges and technological opportunities emerge, scientists are once again challenged to define measurement paradi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annual review of clinical psychology 2023-05, Vol.19 (1), p.133-154
Hauptverfasser: Galatzer-Levy, Isaac R, Onnela, Jukka-Pekka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Since its inception, the discipline of psychology has utilized empirical epistemology and mathematical methodologies to infer psychological functioning from direct observation. As new challenges and technological opportunities emerge, scientists are once again challenged to define measurement paradigms for psychological health and illness that solve novel problems and capitalize on new technological opportunities. In this review, we discuss the theoretical foundations of and scientific advances in remote sensor technology and machine learning models as they are applied to quantify psychological functioning, draw clinical inferences, and chart new directions in treatment.
ISSN:1548-5943
1548-5951
DOI:10.1146/annurev-clinpsy-080921-073212