Ocean temperatures over time estimated from planktonic foraminifera assemblages in core BAR9403 located off the coast of Sumatra. Estimates are provided for the sea-surface, 50m, 100m, and 150m

Maintenance and Update Frequency: notPlanned | Statement: Sea-surface temperatures (SST) were estimated from planktonic foraminifera assemblage data using the modern analogue technique (MAT), in conjunction with the AUSMAT-F4 database. Each SST estimate was calculated as the mean of the best 10 anal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Spooner, Michelle, De Deckker, Patrick
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Maintenance and Update Frequency: notPlanned | Statement: Sea-surface temperatures (SST) were estimated from planktonic foraminifera assemblage data using the modern analogue technique (MAT), in conjunction with the AUSMAT-F4 database. Each SST estimate was calculated as the mean of the best 10 analogues from the global database. | Statement: Sea-surface temperatures (SST) were estimated from planktonic foraminifera assemblage data. This has been collected for every 5cm of the core. The most precise variable of SST is mean annual temperature, followed by Tmax, then Tmin. All variables have a root mean squared error of prediction of less than 1 degree C. Most of the SST estimates are reasonably precise, given that the samples have good analogues in the AUSMAT-F4 database. Estimates do however become a little less precise towards the end of the core in MIS 3 (~30k BP). Parameters: Age of core (yrs BP), mean water temperature (oC), maximum water temperature (oC), minimum water temperature (oC), depth of mixed layer (m), temperature at 50m, 100m and 150m (oC). | Credit The Australian National University (ANU) | Credit Funded by The National Oceans Office (NOO) | Credit Funded by The Australian Research Council (ARC) | Credit Funded by The French Polar Institute | Credit Funded by The Australian Institute of Nuclear Science Engineering (AINSE) | Credit Funded by The Murray Darling Basin Commission | Purpose To investigate general palaeoceanographic conditions in the north-eastern Indian Ocean. This study was part of a larger undertaking to define the history of the Leeuwin Current to the West and South of Australia. | In recent years the term 'enhanced greenhouse effect' has become well known in modern society and yet aspects of this possible 'future climate' are poorly understood. The characteristics of the geological record provide a basis to understand this possible future climate through the examination of alternating glacial (cold) and interglacial (warm) stages. Understanding the variability of sea-surface temperature and biological processes in the water column provides insight into general circulation of present and paleo-ocean currents. The core obtained offshore from Sumatra (BAR9043, 104.0316E, 5.82S) highlights an upwelling signal at 14,000 yrs BP that disrupts the warm stratified water column, which was a feature between Marine Isotope Stage (MIS) 3 to present. This upwelling is timed to a regional pattern of an intensified Australasian Monsoon.