SAIMOS - Biological and Flow Cytometry data collected from sampling stations in South Australia, in June 2021

Maintenance and Update Frequency: asNeeded | Statement: Since May 2014 water samples were taken at each station at three depths; 5m, DCM and 10m below DCM. In vivo CTD profiles were used to identify the temperature, salinity and fluorescence profiles of the water column, ultimately determining the d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Integrated Marine Observing System (IMOS)
Format: Dataset
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Maintenance and Update Frequency: asNeeded | Statement: Since May 2014 water samples were taken at each station at three depths; 5m, DCM and 10m below DCM. In vivo CTD profiles were used to identify the temperature, salinity and fluorescence profiles of the water column, ultimately determining the depth of the Deep Chlorophyll Maximum (DCM). Niskin bottles were used for seawater sampling for nutrients, chlorophyll a, Pico phytoplankton, bacteria and virus analysis and Particulate Inorganic Matter, Particulate Organic Matter, Total Suspended Sediments, and phytoplankton community compositions and abundances. If no DCM could be identified, seawater sampling was done at or near the thermocline interface. Note - from September 2017, "Particulate Inorganic Matter, Particulate Organic Matter, Total Suspended Sediments" was discontinued for the shelf sites. Note - from July 2019, with the introduction of the Gulfs stations, "Particulate Inorganic Matter, Particulate Organic Matter, Total Suspended Sediments" and Zooplankton community compositions and abundances, were measured at these stations. Seawater samples of 50-70 mL were filtered through bonnet syringe filters (0.45 um porosity, Micro Analytix Pty Ltd) and stored at –20oC for nutrient analysis. Dissolved ammonium (NH3, detection limit 0.071 µM), oxides of nitrogen (NOx (NO2 + NO3), detection limit 0.071 µM), phosphate (PO4, detection limit 0.032 µM) and silicate (SiO2, detection limit 0.333 µM), were determined by flow injection analysis with a QuickChem 8500 Automated Ion Analyser. Chlorophyll a concentrations were determined by filtering 2L seawater samples through stacked 5um mesh and pre-combusted glass fibre filter (Whatman GF/F, nominal pore size 0.7 um porosity). Filterswere stored in cryovials and frozen in liquid nitrogen in the field. Samples were stored at -80oC until analysis. Chlorophyll a was analysed via High Performance Liquid Chromatography using anAgilent LC1260 HPLC with a photodiode array detector and a refrigerated autosampler. Since May 2014 SAIMOS has analysed chlorophyll pigments using HPLC techniques. The data being supplied is slightly processed (reformatted really) to show similar results to the previous spectrophotometry analyse method. For picophytoplankton, triplicate 1 ml samples were added to cryovials which were pre-spiked with 10 ul glutaraldehyde (25% EM grade). For bacteria and viruses, triplicate 1 ml samples were added to cryovials which were pre-spiked with 20 ul glut