A categorical \mathfrak{sl}_2 action on some moduli spaces of sheaves
We study certain sequences of moduli spaces of sheaves on K3 surfaces, building on work of Markman [J. Algebraic Geom. 10 (2001), pp. 623–694], Yoshioka [J. Reine Angew.Math. 515 (1999), pp. 97–123], and Nakajima [ Convolution on homology groups of moduli spaces of sheaves on K3 surfaces , Contemp....
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2022-12, Vol.375 (12), p.8969 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | 8969 |
container_title | Transactions of the American Mathematical Society |
container_volume | 375 |
creator | Nicolas Addington Ryan Takahashi |
description | We study certain sequences of moduli spaces of sheaves on K3 surfaces, building on work of Markman [J. Algebraic Geom. 10 (2001), pp. 623–694], Yoshioka [J. Reine Angew.Math. 515 (1999), pp. 97–123], and Nakajima [ Convolution on homology groups of moduli spaces of sheaves on K3 surfaces , Contemp. Math., vol. 322, Amer. Math. Soc., Providence, RI, 2003, pp. 75–87]. We show that these sequences can be given the structure of a geometric categorical \mathfrak {sl}_2 action in the sense of Cautis, Kamnitzer, and Licata. As a corollary, we get an equivalence between derived categories of some moduli spaces that are birational via stratified Mukai flops. |
doi_str_mv | 10.1090/tran/8779 |
format | Article |
fullrecord | <record><control><sourceid>ams</sourceid><recordid>TN_cdi_ams_primary_10_1090_tran_8779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_tran_8779</sourcerecordid><originalsourceid>FETCH-ams_primary_10_1090_tran_87793</originalsourceid><addsrcrecordid>eNqNzs0KgkAUBeAhCrKfRW8wi7bmHTMdlxFGD9AyGC42puU4MteCiN69hB4gOHA4cBYfYwsBKwEpBJ3DJpBJkg6YJ0BKP5YbGDIPAEI_TaNkzCZE1--ESMYey7Y8x05frKtyrPnJYFcWDm8vqt8q5Jh3lW34N2SN5sae73XFqcVcE7cFp1LjQ9OMjQqsSc9_PWXLfXbcHXw0pFpXGXRPJUD1RNUTVU9c_3n7AGv6QNo</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A categorical \mathfrak{sl}_2 action on some moduli spaces of sheaves</title><source>American Mathematical Society Publications</source><creator>Nicolas Addington ; Ryan Takahashi</creator><creatorcontrib>Nicolas Addington ; Ryan Takahashi</creatorcontrib><description>We study certain sequences of moduli spaces of sheaves on K3 surfaces, building on work of Markman [J. Algebraic Geom. 10 (2001), pp. 623–694], Yoshioka [J. Reine Angew.Math. 515 (1999), pp. 97–123], and Nakajima [ Convolution on homology groups of moduli spaces of sheaves on K3 surfaces , Contemp. Math., vol. 322, Amer. Math. Soc., Providence, RI, 2003, pp. 75–87]. We show that these sequences can be given the structure of a geometric categorical \mathfrak {sl}_2 action in the sense of Cautis, Kamnitzer, and Licata. As a corollary, we get an equivalence between derived categories of some moduli spaces that are birational via stratified Mukai flops.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/8779</identifier><language>eng</language><ispartof>Transactions of the American Mathematical Society, 2022-12, Vol.375 (12), p.8969</ispartof><rights>Copyright 2022, by the authors</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/tran/2022-375-12/S0002-9947-2022-08779-1/S0002-9947-2022-08779-1.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/tran/2022-375-12/S0002-9947-2022-08779-1/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,780,784,23328,27924,27925,77836,77846</link.rule.ids></links><search><creatorcontrib>Nicolas Addington</creatorcontrib><creatorcontrib>Ryan Takahashi</creatorcontrib><title>A categorical \mathfrak{sl}_2 action on some moduli spaces of sheaves</title><title>Transactions of the American Mathematical Society</title><description>We study certain sequences of moduli spaces of sheaves on K3 surfaces, building on work of Markman [J. Algebraic Geom. 10 (2001), pp. 623–694], Yoshioka [J. Reine Angew.Math. 515 (1999), pp. 97–123], and Nakajima [ Convolution on homology groups of moduli spaces of sheaves on K3 surfaces , Contemp. Math., vol. 322, Amer. Math. Soc., Providence, RI, 2003, pp. 75–87]. We show that these sequences can be given the structure of a geometric categorical \mathfrak {sl}_2 action in the sense of Cautis, Kamnitzer, and Licata. As a corollary, we get an equivalence between derived categories of some moduli spaces that are birational via stratified Mukai flops.</description><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqNzs0KgkAUBeAhCrKfRW8wi7bmHTMdlxFGD9AyGC42puU4MteCiN69hB4gOHA4cBYfYwsBKwEpBJ3DJpBJkg6YJ0BKP5YbGDIPAEI_TaNkzCZE1--ESMYey7Y8x05frKtyrPnJYFcWDm8vqt8q5Jh3lW34N2SN5sae73XFqcVcE7cFp1LjQ9OMjQqsSc9_PWXLfXbcHXw0pFpXGXRPJUD1RNUTVU9c_3n7AGv6QNo</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Nicolas Addington</creator><creator>Ryan Takahashi</creator><scope/></search><sort><creationdate>20221201</creationdate><title>A categorical \mathfrak{sl}_2 action on some moduli spaces of sheaves</title><author>Nicolas Addington ; Ryan Takahashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ams_primary_10_1090_tran_87793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nicolas Addington</creatorcontrib><creatorcontrib>Ryan Takahashi</creatorcontrib><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nicolas Addington</au><au>Ryan Takahashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A categorical \mathfrak{sl}_2 action on some moduli spaces of sheaves</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>375</volume><issue>12</issue><spage>8969</spage><pages>8969-</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>We study certain sequences of moduli spaces of sheaves on K3 surfaces, building on work of Markman [J. Algebraic Geom. 10 (2001), pp. 623–694], Yoshioka [J. Reine Angew.Math. 515 (1999), pp. 97–123], and Nakajima [ Convolution on homology groups of moduli spaces of sheaves on K3 surfaces , Contemp. Math., vol. 322, Amer. Math. Soc., Providence, RI, 2003, pp. 75–87]. We show that these sequences can be given the structure of a geometric categorical \mathfrak {sl}_2 action in the sense of Cautis, Kamnitzer, and Licata. As a corollary, we get an equivalence between derived categories of some moduli spaces that are birational via stratified Mukai flops.</abstract><doi>10.1090/tran/8779</doi><tpages>37</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9947 |
ispartof | Transactions of the American Mathematical Society, 2022-12, Vol.375 (12), p.8969 |
issn | 0002-9947 1088-6850 |
language | eng |
recordid | cdi_ams_primary_10_1090_tran_8779 |
source | American Mathematical Society Publications |
title | A categorical \mathfrak{sl}_2 action on some moduli spaces of sheaves |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A50%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20categorical%20%5Cmathfrak%7Bsl%7D_2%20action%20on%20some%20moduli%20spaces%20of%20sheaves&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=Nicolas%20Addington&rft.date=2022-12-01&rft.volume=375&rft.issue=12&rft.spage=8969&rft.pages=8969-&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/8779&rft_dat=%3Cams%3E10_1090_tran_8779%3C/ams%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |