A categorical \mathfrak{sl}_2 action on some moduli spaces of sheaves

We study certain sequences of moduli spaces of sheaves on K3 surfaces, building on work of Markman [J. Algebraic Geom. 10 (2001), pp. 623–694], Yoshioka [J. Reine Angew.Math. 515 (1999), pp. 97–123], and Nakajima [ Convolution on homology groups of moduli spaces of sheaves on K3 surfaces , Contemp....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2022-12, Vol.375 (12), p.8969
Hauptverfasser: Nicolas Addington, Ryan Takahashi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study certain sequences of moduli spaces of sheaves on K3 surfaces, building on work of Markman [J. Algebraic Geom. 10 (2001), pp. 623–694], Yoshioka [J. Reine Angew.Math. 515 (1999), pp. 97–123], and Nakajima [ Convolution on homology groups of moduli spaces of sheaves on K3 surfaces , Contemp. Math., vol. 322, Amer. Math. Soc., Providence, RI, 2003, pp. 75–87]. We show that these sequences can be given the structure of a geometric categorical \mathfrak {sl}_2 action in the sense of Cautis, Kamnitzer, and Licata. As a corollary, we get an equivalence between derived categories of some moduli spaces that are birational via stratified Mukai flops.
ISSN:0002-9947
1088-6850
DOI:10.1090/tran/8779