AF C^-algebras from non-AF groupoids
We construct ample groupoids from certain categories of paths, and prove that their C^*-algebras coincide with the continued fraction approximately finite dimensional (AF) algebras of Effros and Shen. The proof relies on recent classification results for simple nuclear C^*-algebras. The groupoids ar...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2022-10, Vol.375 (10), p.7323 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | 7323 |
container_title | Transactions of the American Mathematical Society |
container_volume | 375 |
creator | Ian Mitscher Jack Spielberg |
description | We construct ample groupoids from certain categories of paths, and prove that their C^*-algebras coincide with the continued fraction approximately finite dimensional (AF) algebras of Effros and Shen. The proof relies on recent classification results for simple nuclear C^*-algebras. The groupoids are not principal. This provides examples of Cartan subalgebras in the continued fraction AF algebras that are isomorphic, but not conjugate, to the standard diagonal subalgebras. |
doi_str_mv | 10.1090/tran/8723 |
format | Article |
fullrecord | <record><control><sourceid>ams</sourceid><recordid>TN_cdi_ams_primary_10_1090_tran_8723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_tran_8723</sourcerecordid><originalsourceid>FETCH-LOGICAL-a184t-65027108603e6c3d236e5a45163f563a0e0f30574442c44e450ebf762fd2bba83</originalsourceid><addsrcrecordid>eNotjz1PwzAURa0KJEJh4B9k6Gr6bD9_ZKwiSitV6gIr1ktjV62apLLLwL8nEUxX9w7n6jD2IuBVQAXLW6J-6axUM1YIcI4bp-GOFQAgeVWhfWCPOZ_HCuhMwRardVl_cbocQ5MolzENXdkPPR_3Yxq-r8OpzU_sPtIlh-f_nLPP9dtHveG7_fu2Xu04CYc3bjRIO54aUMEcVCuVCZpQC6OiNoogQFSgLSLKA2JADaGJ1sjYyqYhp-Zs8celLvtrOnWUfrwAP5n5ycxPZuoXNgE-Ew</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>AF C^-algebras from non-AF groupoids</title><source>American Mathematical Society Publications</source><creator>Ian Mitscher ; Jack Spielberg</creator><creatorcontrib>Ian Mitscher ; Jack Spielberg</creatorcontrib><description>We construct ample groupoids from certain categories of paths, and prove that their C^*-algebras coincide with the continued fraction approximately finite dimensional (AF) algebras of Effros and Shen. The proof relies on recent classification results for simple nuclear C^*-algebras. The groupoids are not principal. This provides examples of Cartan subalgebras in the continued fraction AF algebras that are isomorphic, but not conjugate, to the standard diagonal subalgebras.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/8723</identifier><language>eng</language><ispartof>Transactions of the American Mathematical Society, 2022-10, Vol.375 (10), p.7323</ispartof><rights>Copyright 2022, American Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/tran/2022-375-10/S0002-9947-2022-08723-7/S0002-9947-2022-08723-7.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/tran/2022-375-10/S0002-9947-2022-08723-7/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,780,784,23328,27924,27925,77836,77846</link.rule.ids></links><search><creatorcontrib>Ian Mitscher</creatorcontrib><creatorcontrib>Jack Spielberg</creatorcontrib><title>AF C^-algebras from non-AF groupoids</title><title>Transactions of the American Mathematical Society</title><description>We construct ample groupoids from certain categories of paths, and prove that their C^*-algebras coincide with the continued fraction approximately finite dimensional (AF) algebras of Effros and Shen. The proof relies on recent classification results for simple nuclear C^*-algebras. The groupoids are not principal. This provides examples of Cartan subalgebras in the continued fraction AF algebras that are isomorphic, but not conjugate, to the standard diagonal subalgebras.</description><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotjz1PwzAURa0KJEJh4B9k6Gr6bD9_ZKwiSitV6gIr1ktjV62apLLLwL8nEUxX9w7n6jD2IuBVQAXLW6J-6axUM1YIcI4bp-GOFQAgeVWhfWCPOZ_HCuhMwRardVl_cbocQ5MolzENXdkPPR_3Yxq-r8OpzU_sPtIlh-f_nLPP9dtHveG7_fu2Xu04CYc3bjRIO54aUMEcVCuVCZpQC6OiNoogQFSgLSLKA2JADaGJ1sjYyqYhp-Zs8celLvtrOnWUfrwAP5n5ycxPZuoXNgE-Ew</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Ian Mitscher</creator><creator>Jack Spielberg</creator><scope/></search><sort><creationdate>20221001</creationdate><title>AF C^-algebras from non-AF groupoids</title><author>Ian Mitscher ; Jack Spielberg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a184t-65027108603e6c3d236e5a45163f563a0e0f30574442c44e450ebf762fd2bba83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ian Mitscher</creatorcontrib><creatorcontrib>Jack Spielberg</creatorcontrib><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ian Mitscher</au><au>Jack Spielberg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AF C^-algebras from non-AF groupoids</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>375</volume><issue>10</issue><spage>7323</spage><pages>7323-</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>We construct ample groupoids from certain categories of paths, and prove that their C^*-algebras coincide with the continued fraction approximately finite dimensional (AF) algebras of Effros and Shen. The proof relies on recent classification results for simple nuclear C^*-algebras. The groupoids are not principal. This provides examples of Cartan subalgebras in the continued fraction AF algebras that are isomorphic, but not conjugate, to the standard diagonal subalgebras.</abstract><doi>10.1090/tran/8723</doi><tpages>49</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9947 |
ispartof | Transactions of the American Mathematical Society, 2022-10, Vol.375 (10), p.7323 |
issn | 0002-9947 1088-6850 |
language | eng |
recordid | cdi_ams_primary_10_1090_tran_8723 |
source | American Mathematical Society Publications |
title | AF C^-algebras from non-AF groupoids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T02%3A01%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AF%20C%5E-algebras%20from%20non-AF%20groupoids&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=Ian%20Mitscher&rft.date=2022-10-01&rft.volume=375&rft.issue=10&rft.spage=7323&rft.pages=7323-&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/8723&rft_dat=%3Cams%3E10_1090_tran_8723%3C/ams%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |