AF C^-algebras from non-AF groupoids
We construct ample groupoids from certain categories of paths, and prove that their C^*-algebras coincide with the continued fraction approximately finite dimensional (AF) algebras of Effros and Shen. The proof relies on recent classification results for simple nuclear C^*-algebras. The groupoids ar...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2022-10, Vol.375 (10), p.7323 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We construct ample groupoids from certain categories of paths, and prove that their C^*-algebras coincide with the continued fraction approximately finite dimensional (AF) algebras of Effros and Shen. The proof relies on recent classification results for simple nuclear C^*-algebras. The groupoids are not principal. This provides examples of Cartan subalgebras in the continued fraction AF algebras that are isomorphic, but not conjugate, to the standard diagonal subalgebras. |
---|---|
ISSN: | 0002-9947 1088-6850 |
DOI: | 10.1090/tran/8723 |