Stability manifolds of varieties with finite Albanese morphisms

For a smooth projective complex variety whose Albanese morphism is finite, we show that every Bridgeland stability condition on its bounded derived category of coherent sheaves is geometric, in the sense that all skyscraper sheaves are stable with the same phase. Furthermore, we describe the stabili...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society 2022-08, Vol.375 (8), p.5669
Hauptverfasser: Lie Fu, Chunyi Li, Xiaolei Zhao
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a smooth projective complex variety whose Albanese morphism is finite, we show that every Bridgeland stability condition on its bounded derived category of coherent sheaves is geometric, in the sense that all skyscraper sheaves are stable with the same phase. Furthermore, we describe the stability manifolds of irregular surfaces and abelian threefolds with Néron–Severi rank one, and show that they are connected and contractible.
ISSN:0002-9947
1088-6850
DOI:10.1090/tran/8651