Multiplicative ergodic theorem of semi-discrete dynamic system

In this paper, Multiplicative Ergodic Theorem (MET) on manifolds with semi-discrete time variable is proved. Considering that there is no cocycle property with any semi-discrete time variable t\in \mathbb {T}, we define the quasi-cocycle property on forward and backward time scales. We obtain the sk...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2022-10, Vol.150 (10), p.4393
Hauptverfasser: Jiahui Feng, Xue Yang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, Multiplicative Ergodic Theorem (MET) on manifolds with semi-discrete time variable is proved. Considering that there is no cocycle property with any semi-discrete time variable t\in \mathbb {T}, we define the quasi-cocycle property on forward and backward time scales. We obtain the skew-product quasi-flow with semi-discrete time variable t\in \mathbb {T}. For dynamic equations with \Delta-derivative and \nabla-derivative on \mathbb {T}, we present a more generalized version about MET of semi-discrete system. The result is more suitable for treating models with nonuniform time difference and studying the stability of systems induced by both differential and difference operators.
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/15999