Improvements of p-adic estimates of exponential sums
Let n, r and f be positive integers. Let p be a prime number and \psi be an arbitrary fixed nontrivial additive character of the finite field \mathbb F_q with q=p^f elements. Let F be a polynomial in \mathbb F_q[x_1,\dots ,x_n] and V be the affine algebraic variety defined over \mathbb {F}_q by the...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2022-09, Vol.150 (9), p.3687 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | 3687 |
container_title | Proceedings of the American Mathematical Society |
container_volume | 150 |
creator | Yulu Feng Shaofang Hong |
description | Let n, r and f be positive integers. Let p be a prime number and \psi be an arbitrary fixed nontrivial additive character of the finite field \mathbb F_q with q=p^f elements. Let F be a polynomial in \mathbb F_q[x_1,\dots ,x_n] and V be the affine algebraic variety defined over \mathbb {F}_q by the simultaneous vanishing of the polynomials \{F_i\}_{i=1}^r\subseteq \mathbb F_q[x_1,\dots ,x_n]. Let \mathbb {Z}_{\ge 0} stand for the set of all nonnegative integers and A be an arbitrary nonempty subset of \{1,\dots ,n\}. For a polynomial H(X)=\sum _{{\mathbf {d}}}\alpha _{\mathbf {d}}X^{\mathbf {d}} with {\mathbf {d}}=(d_1,\dots ,d_n)\in \mathbb {Z}_{\ge 0}^n, X^{\mathbf {d}}=x_1^{d_1}\dots x_n^{d_n} and \alpha _{\mathbf {d}}\in \mathbb {F}_q^*, we define \deg _A(H)=\max _{{\mathbf {d}}}\{\sum _{i\in A}d_i\} to be the A-degree of H. In this paper, for the exponential sum S(F,V,\psi )=\sum _{X\in V(\mathbb {F}_q)}\psi (F(X)) with V(\mathbb {F}_q) being the set of the \mathbb {F}_q-rational points of V, we show that \begin{equation*} \mathrm {ord}_q S(F,V,\psi )\ge \frac {|A|-\sum _{i=1}^r\deg _A(F_i)} {\max _{1\le i\le r}\{\deg _A(F),\deg _A(F_i)\}} \end{equation*} if \deg _A(F)>0 or \deg _A(F_i)>0 for some i\in \{1,\dots ,r\}. This estimate improves Sperber’s theorem obtained in 1986. This also leads to an improvement of the p-adic valuation of the number N(V) of \mathbb {F}_q-rational points on the variety V which strengthens the Ax-Katz theorem. Moreover, we use the A-degree and p-weight A-degree to establish p-adic estimates on multiplicative character sums and twisted exponential sums which improve Wan’s results gotten in 1995. |
doi_str_mv | 10.1090/proc/15995 |
format | Article |
fullrecord | <record><control><sourceid>ams</sourceid><recordid>TN_cdi_ams_primary_10_1090_proc_15995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_proc_15995</sourcerecordid><originalsourceid>FETCH-LOGICAL-a185t-cf3a75fc6abc1f5b47aceaa8ef25ad7fb1bfaa568701fd3aa2334063a41f27bf3</originalsourceid><addsrcrecordid>eNotj09LxDAQxYMoWFcvfoJePMadaZomOcrin4UFL3oO0zQDlc22NFX029tdPT3e471hfkLcItwjOFiP0xDWqJ3TZ6JAsFY2tmrORQEAlXROuUtxlfPHYtHVphD1Ni2br5jiYc7lwOUoqetDGfPcJ5rjKYvf43BYCj3ty_yZ8rW4YNrnePOvK_H-9Pi2eZG71-ft5mEnCa2eZWBFRnNoqA3Iuq0NhUhkI1eaOsMttkykG2sAuVNElVI1NIpq5Mq0rFbi7u8upezHaXlo-vEI_ojqj6j-hKp-AaMjSG8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Improvements of p-adic estimates of exponential sums</title><source>American Mathematical Society Publications</source><creator>Yulu Feng ; Shaofang Hong</creator><creatorcontrib>Yulu Feng ; Shaofang Hong</creatorcontrib><description>Let n, r and f be positive integers. Let p be a prime number and \psi be an arbitrary fixed nontrivial additive character of the finite field \mathbb F_q with q=p^f elements. Let F be a polynomial in \mathbb F_q[x_1,\dots ,x_n] and V be the affine algebraic variety defined over \mathbb {F}_q by the simultaneous vanishing of the polynomials \{F_i\}_{i=1}^r\subseteq \mathbb F_q[x_1,\dots ,x_n]. Let \mathbb {Z}_{\ge 0} stand for the set of all nonnegative integers and A be an arbitrary nonempty subset of \{1,\dots ,n\}. For a polynomial H(X)=\sum _{{\mathbf {d}}}\alpha _{\mathbf {d}}X^{\mathbf {d}} with {\mathbf {d}}=(d_1,\dots ,d_n)\in \mathbb {Z}_{\ge 0}^n, X^{\mathbf {d}}=x_1^{d_1}\dots x_n^{d_n} and \alpha _{\mathbf {d}}\in \mathbb {F}_q^*, we define \deg _A(H)=\max _{{\mathbf {d}}}\{\sum _{i\in A}d_i\} to be the A-degree of H. In this paper, for the exponential sum S(F,V,\psi )=\sum _{X\in V(\mathbb {F}_q)}\psi (F(X)) with V(\mathbb {F}_q) being the set of the \mathbb {F}_q-rational points of V, we show that \begin{equation*} \mathrm {ord}_q S(F,V,\psi )\ge \frac {|A|-\sum _{i=1}^r\deg _A(F_i)} {\max _{1\le i\le r}\{\deg _A(F),\deg _A(F_i)\}} \end{equation*} if \deg _A(F)>0 or \deg _A(F_i)>0 for some i\in \{1,\dots ,r\}. This estimate improves Sperber’s theorem obtained in 1986. This also leads to an improvement of the p-adic valuation of the number N(V) of \mathbb {F}_q-rational points on the variety V which strengthens the Ax-Katz theorem. Moreover, we use the A-degree and p-weight A-degree to establish p-adic estimates on multiplicative character sums and twisted exponential sums which improve Wan’s results gotten in 1995.</description><identifier>ISSN: 0002-9939</identifier><identifier>EISSN: 1088-6826</identifier><identifier>DOI: 10.1090/proc/15995</identifier><language>eng</language><ispartof>Proceedings of the American Mathematical Society, 2022-09, Vol.150 (9), p.3687</ispartof><rights>Copyright 2022, American Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/proc/2022-150-09/S0002-9939-2022-15995-4/S0002-9939-2022-15995-4.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/proc/2022-150-09/S0002-9939-2022-15995-4/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,780,784,23328,27924,27925,77836,77846</link.rule.ids></links><search><creatorcontrib>Yulu Feng</creatorcontrib><creatorcontrib>Shaofang Hong</creatorcontrib><title>Improvements of p-adic estimates of exponential sums</title><title>Proceedings of the American Mathematical Society</title><description>Let n, r and f be positive integers. Let p be a prime number and \psi be an arbitrary fixed nontrivial additive character of the finite field \mathbb F_q with q=p^f elements. Let F be a polynomial in \mathbb F_q[x_1,\dots ,x_n] and V be the affine algebraic variety defined over \mathbb {F}_q by the simultaneous vanishing of the polynomials \{F_i\}_{i=1}^r\subseteq \mathbb F_q[x_1,\dots ,x_n]. Let \mathbb {Z}_{\ge 0} stand for the set of all nonnegative integers and A be an arbitrary nonempty subset of \{1,\dots ,n\}. For a polynomial H(X)=\sum _{{\mathbf {d}}}\alpha _{\mathbf {d}}X^{\mathbf {d}} with {\mathbf {d}}=(d_1,\dots ,d_n)\in \mathbb {Z}_{\ge 0}^n, X^{\mathbf {d}}=x_1^{d_1}\dots x_n^{d_n} and \alpha _{\mathbf {d}}\in \mathbb {F}_q^*, we define \deg _A(H)=\max _{{\mathbf {d}}}\{\sum _{i\in A}d_i\} to be the A-degree of H. In this paper, for the exponential sum S(F,V,\psi )=\sum _{X\in V(\mathbb {F}_q)}\psi (F(X)) with V(\mathbb {F}_q) being the set of the \mathbb {F}_q-rational points of V, we show that \begin{equation*} \mathrm {ord}_q S(F,V,\psi )\ge \frac {|A|-\sum _{i=1}^r\deg _A(F_i)} {\max _{1\le i\le r}\{\deg _A(F),\deg _A(F_i)\}} \end{equation*} if \deg _A(F)>0 or \deg _A(F_i)>0 for some i\in \{1,\dots ,r\}. This estimate improves Sperber’s theorem obtained in 1986. This also leads to an improvement of the p-adic valuation of the number N(V) of \mathbb {F}_q-rational points on the variety V which strengthens the Ax-Katz theorem. Moreover, we use the A-degree and p-weight A-degree to establish p-adic estimates on multiplicative character sums and twisted exponential sums which improve Wan’s results gotten in 1995.</description><issn>0002-9939</issn><issn>1088-6826</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotj09LxDAQxYMoWFcvfoJePMadaZomOcrin4UFL3oO0zQDlc22NFX029tdPT3e471hfkLcItwjOFiP0xDWqJ3TZ6JAsFY2tmrORQEAlXROuUtxlfPHYtHVphD1Ni2br5jiYc7lwOUoqetDGfPcJ5rjKYvf43BYCj3ty_yZ8rW4YNrnePOvK_H-9Pi2eZG71-ft5mEnCa2eZWBFRnNoqA3Iuq0NhUhkI1eaOsMttkykG2sAuVNElVI1NIpq5Mq0rFbi7u8upezHaXlo-vEI_ojqj6j-hKp-AaMjSG8</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Yulu Feng</creator><creator>Shaofang Hong</creator><scope/></search><sort><creationdate>20220901</creationdate><title>Improvements of p-adic estimates of exponential sums</title><author>Yulu Feng ; Shaofang Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a185t-cf3a75fc6abc1f5b47aceaa8ef25ad7fb1bfaa568701fd3aa2334063a41f27bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yulu Feng</creatorcontrib><creatorcontrib>Shaofang Hong</creatorcontrib><jtitle>Proceedings of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yulu Feng</au><au>Shaofang Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improvements of p-adic estimates of exponential sums</atitle><jtitle>Proceedings of the American Mathematical Society</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>150</volume><issue>9</issue><spage>3687</spage><pages>3687-</pages><issn>0002-9939</issn><eissn>1088-6826</eissn><abstract>Let n, r and f be positive integers. Let p be a prime number and \psi be an arbitrary fixed nontrivial additive character of the finite field \mathbb F_q with q=p^f elements. Let F be a polynomial in \mathbb F_q[x_1,\dots ,x_n] and V be the affine algebraic variety defined over \mathbb {F}_q by the simultaneous vanishing of the polynomials \{F_i\}_{i=1}^r\subseteq \mathbb F_q[x_1,\dots ,x_n]. Let \mathbb {Z}_{\ge 0} stand for the set of all nonnegative integers and A be an arbitrary nonempty subset of \{1,\dots ,n\}. For a polynomial H(X)=\sum _{{\mathbf {d}}}\alpha _{\mathbf {d}}X^{\mathbf {d}} with {\mathbf {d}}=(d_1,\dots ,d_n)\in \mathbb {Z}_{\ge 0}^n, X^{\mathbf {d}}=x_1^{d_1}\dots x_n^{d_n} and \alpha _{\mathbf {d}}\in \mathbb {F}_q^*, we define \deg _A(H)=\max _{{\mathbf {d}}}\{\sum _{i\in A}d_i\} to be the A-degree of H. In this paper, for the exponential sum S(F,V,\psi )=\sum _{X\in V(\mathbb {F}_q)}\psi (F(X)) with V(\mathbb {F}_q) being the set of the \mathbb {F}_q-rational points of V, we show that \begin{equation*} \mathrm {ord}_q S(F,V,\psi )\ge \frac {|A|-\sum _{i=1}^r\deg _A(F_i)} {\max _{1\le i\le r}\{\deg _A(F),\deg _A(F_i)\}} \end{equation*} if \deg _A(F)>0 or \deg _A(F_i)>0 for some i\in \{1,\dots ,r\}. This estimate improves Sperber’s theorem obtained in 1986. This also leads to an improvement of the p-adic valuation of the number N(V) of \mathbb {F}_q-rational points on the variety V which strengthens the Ax-Katz theorem. Moreover, we use the A-degree and p-weight A-degree to establish p-adic estimates on multiplicative character sums and twisted exponential sums which improve Wan’s results gotten in 1995.</abstract><doi>10.1090/proc/15995</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9939 |
ispartof | Proceedings of the American Mathematical Society, 2022-09, Vol.150 (9), p.3687 |
issn | 0002-9939 1088-6826 |
language | eng |
recordid | cdi_ams_primary_10_1090_proc_15995 |
source | American Mathematical Society Publications |
title | Improvements of p-adic estimates of exponential sums |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A17%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improvements%20of%20p-adic%20estimates%20of%20exponential%20sums&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.au=Yulu%20Feng&rft.date=2022-09-01&rft.volume=150&rft.issue=9&rft.spage=3687&rft.pages=3687-&rft.issn=0002-9939&rft.eissn=1088-6826&rft_id=info:doi/10.1090/proc/15995&rft_dat=%3Cams%3E10_1090_proc_15995%3C/ams%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |