Improvements of p-adic estimates of exponential sums

Let n, r and f be positive integers. Let p be a prime number and \psi be an arbitrary fixed nontrivial additive character of the finite field \mathbb F_q with q=p^f elements. Let F be a polynomial in \mathbb F_q[x_1,\dots ,x_n] and V be the affine algebraic variety defined over \mathbb {F}_q by the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2022-09, Vol.150 (9), p.3687
Hauptverfasser: Yulu Feng, Shaofang Hong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let n, r and f be positive integers. Let p be a prime number and \psi be an arbitrary fixed nontrivial additive character of the finite field \mathbb F_q with q=p^f elements. Let F be a polynomial in \mathbb F_q[x_1,\dots ,x_n] and V be the affine algebraic variety defined over \mathbb {F}_q by the simultaneous vanishing of the polynomials \{F_i\}_{i=1}^r\subseteq \mathbb F_q[x_1,\dots ,x_n]. Let \mathbb {Z}_{\ge 0} stand for the set of all nonnegative integers and A be an arbitrary nonempty subset of \{1,\dots ,n\}. For a polynomial H(X)=\sum _{{\mathbf {d}}}\alpha _{\mathbf {d}}X^{\mathbf {d}} with {\mathbf {d}}=(d_1,\dots ,d_n)\in \mathbb {Z}_{\ge 0}^n, X^{\mathbf {d}}=x_1^{d_1}\dots x_n^{d_n} and \alpha _{\mathbf {d}}\in \mathbb {F}_q^*, we define \deg _A(H)=\max _{{\mathbf {d}}}\{\sum _{i\in A}d_i\} to be the A-degree of H. In this paper, for the exponential sum S(F,V,\psi )=\sum _{X\in V(\mathbb {F}_q)}\psi (F(X)) with V(\mathbb {F}_q) being the set of the \mathbb {F}_q-rational points of V, we show that \begin{equation*} \mathrm {ord}_q S(F,V,\psi )\ge \frac {|A|-\sum _{i=1}^r\deg _A(F_i)} {\max _{1\le i\le r}\{\deg _A(F),\deg _A(F_i)\}} \end{equation*} if \deg _A(F)>0 or \deg _A(F_i)>0 for some i\in \{1,\dots ,r\}. This estimate improves Sperber’s theorem obtained in 1986. This also leads to an improvement of the p-adic valuation of the number N(V) of \mathbb {F}_q-rational points on the variety V which strengthens the Ax-Katz theorem. Moreover, we use the A-degree and p-weight A-degree to establish p-adic estimates on multiplicative character sums and twisted exponential sums which improve Wan’s results gotten in 1995.
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/15995