Profinite groups with few conjugacy classes of p-elements

It is proved that a profinite group G has fewer than 2^{\aleph _0} conjugacy classes of p-elements for an odd prime p if and only if its p-Sylow p-subgroups are finite. (Here, by a p-element one understands an element that either has p-power order or topologically generates a group isomorphic to \ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2022-08, Vol.150 (8), p.3297
1. Verfasser: John S. Wilson
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is proved that a profinite group G has fewer than 2^{\aleph _0} conjugacy classes of p-elements for an odd prime p if and only if its p-Sylow p-subgroups are finite. (Here, by a p-element one understands an element that either has p-power order or topologically generates a group isomorphic to \mathbb {Z}_p.) A weaker result is proved for p=2.
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/15925