Profinite groups with few conjugacy classes of p-elements
It is proved that a profinite group G has fewer than 2^{\aleph _0} conjugacy classes of p-elements for an odd prime p if and only if its p-Sylow p-subgroups are finite. (Here, by a p-element one understands an element that either has p-power order or topologically generates a group isomorphic to \ma...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2022-08, Vol.150 (8), p.3297 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is proved that a profinite group G has fewer than 2^{\aleph _0} conjugacy classes of p-elements for an odd prime p if and only if its p-Sylow p-subgroups are finite. (Here, by a p-element one understands an element that either has p-power order or topologically generates a group isomorphic to \mathbb {Z}_p.) A weaker result is proved for p=2. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/15925 |