A curvature-free \operatorname {Log}(2\text{k}-1) theorem

This paper presents a curvature-free version of the Log(2k-1) Theorem of Anderson, Canary, Culler, and Shalen [J. Differential Geometry 44 (1996), pp. 738–782]. It generalizes a result by Hou [J. Differential Geometry 57 (2001), no. 1, pp. 173–193] and its proof is rather straightforward once we kno...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2023-03, Vol.151 (6), p.2429-2434
Hauptverfasser: Balacheff, Florent, Merlin, Louis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a curvature-free version of the Log(2k-1) Theorem of Anderson, Canary, Culler, and Shalen [J. Differential Geometry 44 (1996), pp. 738–782]. It generalizes a result by Hou [J. Differential Geometry 57 (2001), no. 1, pp. 173–193] and its proof is rather straightforward once we know the work by Lim [Trans. Amer. Math. Soc. 360 (2008), no. 10, pp. 5089–5100] on volume entropy for graphs. As a byproduct we obtain a curvature-free version of the Collar Lemma in all dimensions.
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/15280