A curvature-free \operatorname {Log}(2\text{k}-1) theorem
This paper presents a curvature-free version of the Log(2k-1) Theorem of Anderson, Canary, Culler, and Shalen [J. Differential Geometry 44 (1996), pp. 738–782]. It generalizes a result by Hou [J. Differential Geometry 57 (2001), no. 1, pp. 173–193] and its proof is rather straightforward once we kno...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2023-03, Vol.151 (6), p.2429-2434 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a curvature-free version of the Log(2k-1) Theorem of Anderson, Canary, Culler, and Shalen [J. Differential Geometry 44 (1996), pp. 738–782]. It generalizes a result by Hou [J. Differential Geometry 57 (2001), no. 1, pp. 173–193] and its proof is rather straightforward once we know the work by Lim [Trans. Amer. Math. Soc. 360 (2008), no. 10, pp. 5089–5100] on volume entropy for graphs. As a byproduct we obtain a curvature-free version of the Collar Lemma in all dimensions. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/15280 |