Automatic real analyticity and a regal proof of a commutative multivariate L\"owner theorem
We adapt the ``royal road'' method used to simplify automatic analyticity theorems in noncommutative function theory to several complex variables. We show that certain families of functions must be real analytic if they have certain nice properties on one-dimensional slices. Let E \subset...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2021-05, Vol.149 (5), p.2019 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We adapt the ``royal road'' method used to simplify automatic analyticity theorems in noncommutative function theory to several complex variables. We show that certain families of functions must be real analytic if they have certain nice properties on one-dimensional slices. Let E \subset \mathbb{R}^d be open. A function f:E \to \mathbb{R} is matrix monotone lite if f(\varphi _1(t), \ldots , \varphi _d(t)) is a matrix monotone function of t whenever t \in (0,1), the \varphi _i are automorphisms of the upper half plane, and the tuple (\varphi _1(t), \ldots , \varphi _d(t)) maps (0,1) into E. We use the ``royal road" to show that a function is matrix monotone lite if and only if it analytically continues to the multivariate upper half plane as a map into the upper half plane. Moreover, matrix monotone lite functions in two variables are locally matrix monotone in the sense of Agler-McCarthy-Young. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/15255 |