Global dynamics of a Wilson polynomial Li\'enard equation
Gasull and Sabatini in [Ann. Mat. Pura Appl. 198 (2019), pp. 1985-2006] studied limit cycles of a Liénard system which has a fixed invariant curve, i.e., a Wilson polynomial Liénard system. The Liénard system can be changed into \dot x=y-(x^2-1)(x^3-bx), ~ \dot y=-x(1+y(x^3-bx)). For b\leq 0.7 and b...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2020-11, Vol.148 (11), p.4769 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Gasull and Sabatini in [Ann. Mat. Pura Appl. 198 (2019), pp. 1985-2006] studied limit cycles of a Liénard system which has a fixed invariant curve, i.e., a Wilson polynomial Liénard system. The Liénard system can be changed into \dot x=y-(x^2-1)(x^3-bx), ~ \dot y=-x(1+y(x^3-bx)). For b\leq 0.7 and b\geq 0.76, limit cycles of the system are studied completely. But for 0.7 |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/15074 |