Small prime kth power residues
Let k\geq 2 be an integer. Let \epsilon >0 be given. It is widely believed that the smallest prime that is a kth power residue modulo a prime q should be O(q^{\epsilon }) for any \epsilon >0. Elliott has proved that for large primes q\equiv 1\bmod k such a prime is at most q^{\frac {k-1}{4}+\e...
Gespeichert in:
Veröffentlicht in: | Proceedings of the American Mathematical Society 2020-09, Vol.148 (9), p.3801 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let k\geq 2 be an integer. Let \epsilon >0 be given. It is widely believed that the smallest prime that is a kth power residue modulo a prime q should be O(q^{\epsilon }) for any \epsilon >0. Elliott has proved that for large primes q\equiv 1\bmod k such a prime is at most q^{\frac {k-1}{4}+\epsilon } for each \epsilon >0. We show that for large primes q\equiv 1\bmod k, the number of primes p\leq q^{\frac {k-1}{4}+\epsilon } such that p is a kth power residue \bmod \, q is at least q^{\frac {9\epsilon }{20k}}. |
---|---|
ISSN: | 0002-9939 1088-6826 |
DOI: | 10.1090/proc/15011 |