On the rigidity and boundary regularity for Bakry-Emery-Kohn harmonic functions in Bergman metric on the unit ball in C^n

with some restriction of the coefficients of Taylor expansion for \psi at 1. We prove that any smooth B-E-K harmonic function on \overline {B}_n must be holomorphic in B_n. We study the regularity problem for the solution of the Dirichlet boundary value problem: ]]>

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the American Mathematical Society 2017-07, Vol.145 (7), p.2971
1. Verfasser: QiQi Zhang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:with some restriction of the coefficients of Taylor expansion for \psi at 1. We prove that any smooth B-E-K harmonic function on \overline {B}_n must be holomorphic in B_n. We study the regularity problem for the solution of the Dirichlet boundary value problem: ]]>
ISSN:0002-9939
1088-6826
DOI:10.1090/proc/13501