Explicit arithmetic intersection theory and computation of N\'eron-Tate heights

We describe a general algorithm for computing intersection pairings on arithmetic surfaces. We have implemented our algorithm for curves over \mathbb{Q}, and we show how to use it to compute regulators for a number of Jacobians of smooth plane quartics, and to numerically verify the conjecture of Bi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of computation 2020-01, Vol.89 (321), p.395
Hauptverfasser: Raymond van Bommel, David Holmes, J. Steffen Müller
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 321
container_start_page 395
container_title Mathematics of computation
container_volume 89
creator Raymond van Bommel
David Holmes
J. Steffen Müller
description We describe a general algorithm for computing intersection pairings on arithmetic surfaces. We have implemented our algorithm for curves over \mathbb{Q}, and we show how to use it to compute regulators for a number of Jacobians of smooth plane quartics, and to numerically verify the conjecture of Birch and Swinnerton-Dyer for the Jacobian of the split Cartan curve of level 13, up to squares.
doi_str_mv 10.1090/mcom/3441
format Article
fullrecord <record><control><sourceid>ams</sourceid><recordid>TN_cdi_ams_primary_10_1090_mcom_3441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_mcom_3441</sourcerecordid><originalsourceid>FETCH-ams_primary_10_1090_mcom_34413</originalsourceid><addsrcrecordid>eNqNzrsKwjAYBeAgCtbL4BtkEJxq__TuLIqTLh2FEGpqI01Tkl-wb68VH8DpwOFw-AhZMdgy2EGgS6ODKI7ZiHgM8txP8zgcEw8gTPwkY_mUzJx7AABLk8wjl8Ora1SpkAqrsNYSVUlVi9I6WaIyLcVaGttT0d7o57t7ovjWpqLn60Za0_qFQElrqe41ugWZVKJxcvnLOVkfD8X-5AvteGeVFrbnDPiA5QOWD9joz9kbkIhExw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Explicit arithmetic intersection theory and computation of N\'eron-Tate heights</title><source>American Mathematical Society Publications</source><creator>Raymond van Bommel ; David Holmes ; J. Steffen Müller</creator><creatorcontrib>Raymond van Bommel ; David Holmes ; J. Steffen Müller</creatorcontrib><description>We describe a general algorithm for computing intersection pairings on arithmetic surfaces. We have implemented our algorithm for curves over \mathbb{Q}, and we show how to use it to compute regulators for a number of Jacobians of smooth plane quartics, and to numerically verify the conjecture of Birch and Swinnerton-Dyer for the Jacobian of the split Cartan curve of level 13, up to squares.</description><identifier>ISSN: 0025-5718</identifier><identifier>EISSN: 1088-6842</identifier><identifier>DOI: 10.1090/mcom/3441</identifier><language>eng</language><ispartof>Mathematics of computation, 2020-01, Vol.89 (321), p.395</ispartof><rights>Copyright 2019, American Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/mcom/2020-89-321/S0025-5718-2019-03441-5/S0025-5718-2019-03441-5.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/mcom/2020-89-321/S0025-5718-2019-03441-5/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,777,781,23309,27905,27906,77585,77595</link.rule.ids></links><search><creatorcontrib>Raymond van Bommel</creatorcontrib><creatorcontrib>David Holmes</creatorcontrib><creatorcontrib>J. Steffen Müller</creatorcontrib><title>Explicit arithmetic intersection theory and computation of N\'eron-Tate heights</title><title>Mathematics of computation</title><description>We describe a general algorithm for computing intersection pairings on arithmetic surfaces. We have implemented our algorithm for curves over \mathbb{Q}, and we show how to use it to compute regulators for a number of Jacobians of smooth plane quartics, and to numerically verify the conjecture of Birch and Swinnerton-Dyer for the Jacobian of the split Cartan curve of level 13, up to squares.</description><issn>0025-5718</issn><issn>1088-6842</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqNzrsKwjAYBeAgCtbL4BtkEJxq__TuLIqTLh2FEGpqI01Tkl-wb68VH8DpwOFw-AhZMdgy2EGgS6ODKI7ZiHgM8txP8zgcEw8gTPwkY_mUzJx7AABLk8wjl8Ora1SpkAqrsNYSVUlVi9I6WaIyLcVaGttT0d7o57t7ovjWpqLn60Za0_qFQElrqe41ugWZVKJxcvnLOVkfD8X-5AvteGeVFrbnDPiA5QOWD9joz9kbkIhExw</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Raymond van Bommel</creator><creator>David Holmes</creator><creator>J. Steffen Müller</creator><scope/></search><sort><creationdate>20200101</creationdate><title>Explicit arithmetic intersection theory and computation of N\'eron-Tate heights</title><author>Raymond van Bommel ; David Holmes ; J. Steffen Müller</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ams_primary_10_1090_mcom_34413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raymond van Bommel</creatorcontrib><creatorcontrib>David Holmes</creatorcontrib><creatorcontrib>J. Steffen Müller</creatorcontrib><jtitle>Mathematics of computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raymond van Bommel</au><au>David Holmes</au><au>J. Steffen Müller</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Explicit arithmetic intersection theory and computation of N\'eron-Tate heights</atitle><jtitle>Mathematics of computation</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>89</volume><issue>321</issue><spage>395</spage><pages>395-</pages><issn>0025-5718</issn><eissn>1088-6842</eissn><abstract>We describe a general algorithm for computing intersection pairings on arithmetic surfaces. We have implemented our algorithm for curves over \mathbb{Q}, and we show how to use it to compute regulators for a number of Jacobians of smooth plane quartics, and to numerically verify the conjecture of Birch and Swinnerton-Dyer for the Jacobian of the split Cartan curve of level 13, up to squares.</abstract><doi>10.1090/mcom/3441</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5718
ispartof Mathematics of computation, 2020-01, Vol.89 (321), p.395
issn 0025-5718
1088-6842
language eng
recordid cdi_ams_primary_10_1090_mcom_3441
source American Mathematical Society Publications
title Explicit arithmetic intersection theory and computation of N\'eron-Tate heights
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A48%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Explicit%20arithmetic%20intersection%20theory%20and%20computation%20of%20N%5C'eron-Tate%20heights&rft.jtitle=Mathematics%20of%20computation&rft.au=Raymond%20van%20Bommel&rft.date=2020-01-01&rft.volume=89&rft.issue=321&rft.spage=395&rft.pages=395-&rft.issn=0025-5718&rft.eissn=1088-6842&rft_id=info:doi/10.1090/mcom/3441&rft_dat=%3Cams%3E10_1090_mcom_3441%3C/ams%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true