Explicit arithmetic intersection theory and computation of N\'eron-Tate heights

We describe a general algorithm for computing intersection pairings on arithmetic surfaces. We have implemented our algorithm for curves over \mathbb{Q}, and we show how to use it to compute regulators for a number of Jacobians of smooth plane quartics, and to numerically verify the conjecture of Bi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of computation 2020-01, Vol.89 (321), p.395
Hauptverfasser: Raymond van Bommel, David Holmes, J. Steffen Müller
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe a general algorithm for computing intersection pairings on arithmetic surfaces. We have implemented our algorithm for curves over \mathbb{Q}, and we show how to use it to compute regulators for a number of Jacobians of smooth plane quartics, and to numerically verify the conjecture of Birch and Swinnerton-Dyer for the Jacobian of the split Cartan curve of level 13, up to squares.
ISSN:0025-5718
1088-6842
DOI:10.1090/mcom/3441