Explicit arithmetic intersection theory and computation of N\'eron-Tate heights
We describe a general algorithm for computing intersection pairings on arithmetic surfaces. We have implemented our algorithm for curves over \mathbb{Q}, and we show how to use it to compute regulators for a number of Jacobians of smooth plane quartics, and to numerically verify the conjecture of Bi...
Gespeichert in:
Veröffentlicht in: | Mathematics of computation 2020-01, Vol.89 (321), p.395 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We describe a general algorithm for computing intersection pairings on arithmetic surfaces. We have implemented our algorithm for curves over \mathbb{Q}, and we show how to use it to compute regulators for a number of Jacobians of smooth plane quartics, and to numerically verify the conjecture of Birch and Swinnerton-Dyer for the Jacobian of the split Cartan curve of level 13, up to squares. |
---|---|
ISSN: | 0025-5718 1088-6842 |
DOI: | 10.1090/mcom/3441 |