An analytic method for bounding \psi(x)
In this paper we present an analytic algorithm which calculates almost sharp bounds for the normalized remainder term (t-\psi (t))/\sqrt t for t\leq x in expected run time O(x^{1/2+\varepsilon }) for every \varepsilon >0. The method has been implemented and used to calculate such bounds for t\leq...
Gespeichert in:
Veröffentlicht in: | Mathematics of computation 2018-07, Vol.87 (312), p.1991 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 312 |
container_start_page | 1991 |
container_title | Mathematics of computation |
container_volume | 87 |
creator | Jan Büthe |
description | In this paper we present an analytic algorithm which calculates almost sharp bounds for the normalized remainder term (t-\psi (t))/\sqrt t for t\leq x in expected run time O(x^{1/2+\varepsilon }) for every \varepsilon >0. The method has been implemented and used to calculate such bounds for t\leq 10^{19}. In particular, these imply that li(x)-\pi (x) is positive for 2\leq x\leq 10^{19}. |
doi_str_mv | 10.1090/mcom/3264 |
format | Article |
fullrecord | <record><control><sourceid>ams</sourceid><recordid>TN_cdi_ams_primary_10_1090_mcom_3264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_mcom_3264</sourcerecordid><originalsourceid>FETCH-LOGICAL-a184t-8059ed56b7667e324e4e3684e986153fecc246006a21ad8415c28ce55847e2413</originalsourceid><addsrcrecordid>eNotz01Lw0AUheFBFIzVhf8gC0FdjL13Pm-WpVRbKLjRnTBMJxONdJKSiWD_vQZdnd3LeRi7RnhAqGCeQp_mUhh1wgoEIm5IiVNWAAjNtUU6Zxc5fwIAGm0LdrvoSt_5_XFsQ5ni-NHXZdMP5a7_6uq2ey_fDrm9-76_ZGeN3-d49b8z9vq4elmu-fb5abNcbLlHUiMn0FWstdlZY2yUQkUV5e-FWJFBLZsYglAGwHiBviaFOggKUWtSNgqFcsZu_ro-ZXcY2uSHo0NwE85NODfh5A-HbD-A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An analytic method for bounding \psi(x)</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>American Mathematical Society Publications</source><creator>Jan Büthe</creator><creatorcontrib>Jan Büthe</creatorcontrib><description>In this paper we present an analytic algorithm which calculates almost sharp bounds for the normalized remainder term (t-\psi (t))/\sqrt t for t\leq x in expected run time O(x^{1/2+\varepsilon }) for every \varepsilon >0. The method has been implemented and used to calculate such bounds for t\leq 10^{19}. In particular, these imply that li(x)-\pi (x) is positive for 2\leq x\leq 10^{19}.</description><identifier>ISSN: 0025-5718</identifier><identifier>EISSN: 1088-6842</identifier><identifier>DOI: 10.1090/mcom/3264</identifier><language>eng</language><ispartof>Mathematics of computation, 2018-07, Vol.87 (312), p.1991</ispartof><rights>Copyright 2017, American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/mcom/2018-87-312/S0025-5718-2017-03264-6/S0025-5718-2017-03264-6.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/mcom/2018-87-312/S0025-5718-2017-03264-6/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,314,780,784,23324,23328,27924,27925,77836,77838,77846,77848</link.rule.ids></links><search><creatorcontrib>Jan Büthe</creatorcontrib><title>An analytic method for bounding \psi(x)</title><title>Mathematics of computation</title><description>In this paper we present an analytic algorithm which calculates almost sharp bounds for the normalized remainder term (t-\psi (t))/\sqrt t for t\leq x in expected run time O(x^{1/2+\varepsilon }) for every \varepsilon >0. The method has been implemented and used to calculate such bounds for t\leq 10^{19}. In particular, these imply that li(x)-\pi (x) is positive for 2\leq x\leq 10^{19}.</description><issn>0025-5718</issn><issn>1088-6842</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNotz01Lw0AUheFBFIzVhf8gC0FdjL13Pm-WpVRbKLjRnTBMJxONdJKSiWD_vQZdnd3LeRi7RnhAqGCeQp_mUhh1wgoEIm5IiVNWAAjNtUU6Zxc5fwIAGm0LdrvoSt_5_XFsQ5ni-NHXZdMP5a7_6uq2ey_fDrm9-76_ZGeN3-d49b8z9vq4elmu-fb5abNcbLlHUiMn0FWstdlZY2yUQkUV5e-FWJFBLZsYglAGwHiBviaFOggKUWtSNgqFcsZu_ro-ZXcY2uSHo0NwE85NODfh5A-HbD-A</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Jan Büthe</creator><scope/></search><sort><creationdate>20180701</creationdate><title>An analytic method for bounding \psi(x)</title><author>Jan Büthe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a184t-8059ed56b7667e324e4e3684e986153fecc246006a21ad8415c28ce55847e2413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jan Büthe</creatorcontrib><jtitle>Mathematics of computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jan Büthe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An analytic method for bounding \psi(x)</atitle><jtitle>Mathematics of computation</jtitle><date>2018-07-01</date><risdate>2018</risdate><volume>87</volume><issue>312</issue><spage>1991</spage><pages>1991-</pages><issn>0025-5718</issn><eissn>1088-6842</eissn><abstract>In this paper we present an analytic algorithm which calculates almost sharp bounds for the normalized remainder term (t-\psi (t))/\sqrt t for t\leq x in expected run time O(x^{1/2+\varepsilon }) for every \varepsilon >0. The method has been implemented and used to calculate such bounds for t\leq 10^{19}. In particular, these imply that li(x)-\pi (x) is positive for 2\leq x\leq 10^{19}.</abstract><doi>10.1090/mcom/3264</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5718 |
ispartof | Mathematics of computation, 2018-07, Vol.87 (312), p.1991 |
issn | 0025-5718 1088-6842 |
language | eng |
recordid | cdi_ams_primary_10_1090_mcom_3264 |
source | American Mathematical Society Publications (Freely Accessible); JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; American Mathematical Society Publications |
title | An analytic method for bounding \psi(x) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T06%3A15%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20analytic%20method%20for%20bounding%20%5Cpsi(x)&rft.jtitle=Mathematics%20of%20computation&rft.au=Jan%20B%C3%BCthe&rft.date=2018-07-01&rft.volume=87&rft.issue=312&rft.spage=1991&rft.pages=1991-&rft.issn=0025-5718&rft.eissn=1088-6842&rft_id=info:doi/10.1090/mcom/3264&rft_dat=%3Cams%3E10_1090_mcom_3264%3C/ams%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |