An analytic method for bounding \psi(x)
In this paper we present an analytic algorithm which calculates almost sharp bounds for the normalized remainder term (t-\psi (t))/\sqrt t for t\leq x in expected run time O(x^{1/2+\varepsilon }) for every \varepsilon >0. The method has been implemented and used to calculate such bounds for t\leq...
Gespeichert in:
Veröffentlicht in: | Mathematics of computation 2018-07, Vol.87 (312), p.1991 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we present an analytic algorithm which calculates almost sharp bounds for the normalized remainder term (t-\psi (t))/\sqrt t for t\leq x in expected run time O(x^{1/2+\varepsilon }) for every \varepsilon >0. The method has been implemented and used to calculate such bounds for t\leq 10^{19}. In particular, these imply that li(x)-\pi (x) is positive for 2\leq x\leq 10^{19}. |
---|---|
ISSN: | 0025-5718 1088-6842 |
DOI: | 10.1090/mcom/3264 |