μ p \mu _p - and α p \alpha _p -actions on K3 surfaces in characteristic p p
We consider μp\mu _p- and αp\alpha _p-actions on RDP K3 surfaces (K3 surfaces with rational double point (RDP) singularities allowed) in characteristic p>0p > 0. We study possible characteristics, quotient surfaces, and quotient singularities. It turns out that these properties of μp\mu _p- an...
Gespeichert in:
Veröffentlicht in: | Journal of algebraic geometry 2022-08, Vol.32 (2), p.271-322 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 322 |
---|---|
container_issue | 2 |
container_start_page | 271 |
container_title | Journal of algebraic geometry |
container_volume | 32 |
creator | Matsumoto, Yuya |
description | We consider μp\mu _p- and αp\alpha _p-actions on RDP K3 surfaces (K3 surfaces with rational double point (RDP) singularities allowed) in characteristic p>0p > 0. We study possible characteristics, quotient surfaces, and quotient singularities. It turns out that these properties of μp\mu _p- and αp\alpha _p-actions are analogous to those of Z/lZ\mathbb {Z}/l\mathbb {Z}-actions (for primes l≠pl \neq p) and Z/pZ\mathbb {Z}/p\mathbb {Z}-quotients respectively. We also show that conversely an RDP K3 surface with a certain configuration of singularities admits a μp\mu _p- or αp\alpha _p- or Z/pZ\mathbb {Z}/p\mathbb {Z}-covering by a “K3-like” surface, which is often an RDP K3 surface but not always, as in the case of the canonical coverings of Enriques surfaces in characteristic 22. |
doi_str_mv | 10.1090/jag/804 |
format | Article |
fullrecord | <record><control><sourceid>ams</sourceid><recordid>TN_cdi_ams_primary_10_1090_jag_804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_jag_804</sourcerecordid><originalsourceid>FETCH-ams_primary_10_1090_jag_8043</originalsourceid><addsrcrecordid>eNqNjkkKwjAYhYMoWAe8wo_72sQOtmtRBMGVSyH8xNamdAhJu_BY7j1Dz2QqHsDVe7wBPkJWjG4YTahX4MOLaTAiDgv9wN0FcTS2noaR6yeMTcnMmILSLWNh4JBL_wYFt6oDrsAFrO_Qv4YES5XjN0TRyqY20NRw9sF0OkORGpA1iBy1bVMtTSuFfakFmWRYmnT50zlZHw_X_cnFynClZYX6yRnlAym3pNyS-n-NPqvZQLI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>μ p \mu _p - and α p \alpha _p -actions on K3 surfaces in characteristic p p</title><source>American Mathematical Society Journals</source><creator>Matsumoto, Yuya</creator><creatorcontrib>Matsumoto, Yuya</creatorcontrib><description>We consider μp\mu _p- and αp\alpha _p-actions on RDP K3 surfaces (K3 surfaces with rational double point (RDP) singularities allowed) in characteristic p>0p > 0. We study possible characteristics, quotient surfaces, and quotient singularities. It turns out that these properties of μp\mu _p- and αp\alpha _p-actions are analogous to those of Z/lZ\mathbb {Z}/l\mathbb {Z}-actions (for primes l≠pl \neq p) and Z/pZ\mathbb {Z}/p\mathbb {Z}-quotients respectively. We also show that conversely an RDP K3 surface with a certain configuration of singularities admits a μp\mu _p- or αp\alpha _p- or Z/pZ\mathbb {Z}/p\mathbb {Z}-covering by a “K3-like” surface, which is often an RDP K3 surface but not always, as in the case of the canonical coverings of Enriques surfaces in characteristic 22.</description><identifier>ISSN: 1056-3911</identifier><identifier>EISSN: 1534-7486</identifier><identifier>DOI: 10.1090/jag/804</identifier><language>eng</language><publisher>Providence, Rhode Island: American Mathematical Society</publisher><subject>Research article</subject><ispartof>Journal of algebraic geometry, 2022-08, Vol.32 (2), p.271-322</ispartof><rights>Copyright 2022 University Press, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7371-7956</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/jag/2023-32-02/S1056-3911-2022-00804-X/S1056-3911-2022-00804-X.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttps://www.ams.org/jag/2023-32-02/S1056-3911-2022-00804-X/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,314,776,780,23307,27901,27902,77578,77588</link.rule.ids></links><search><creatorcontrib>Matsumoto, Yuya</creatorcontrib><title>μ p \mu _p - and α p \alpha _p -actions on K3 surfaces in characteristic p p</title><title>Journal of algebraic geometry</title><addtitle>J. Algebraic Geom</addtitle><description>We consider μp\mu _p- and αp\alpha _p-actions on RDP K3 surfaces (K3 surfaces with rational double point (RDP) singularities allowed) in characteristic p>0p > 0. We study possible characteristics, quotient surfaces, and quotient singularities. It turns out that these properties of μp\mu _p- and αp\alpha _p-actions are analogous to those of Z/lZ\mathbb {Z}/l\mathbb {Z}-actions (for primes l≠pl \neq p) and Z/pZ\mathbb {Z}/p\mathbb {Z}-quotients respectively. We also show that conversely an RDP K3 surface with a certain configuration of singularities admits a μp\mu _p- or αp\alpha _p- or Z/pZ\mathbb {Z}/p\mathbb {Z}-covering by a “K3-like” surface, which is often an RDP K3 surface but not always, as in the case of the canonical coverings of Enriques surfaces in characteristic 22.</description><subject>Research article</subject><issn>1056-3911</issn><issn>1534-7486</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqNjkkKwjAYhYMoWAe8wo_72sQOtmtRBMGVSyH8xNamdAhJu_BY7j1Dz2QqHsDVe7wBPkJWjG4YTahX4MOLaTAiDgv9wN0FcTS2noaR6yeMTcnMmILSLWNh4JBL_wYFt6oDrsAFrO_Qv4YES5XjN0TRyqY20NRw9sF0OkORGpA1iBy1bVMtTSuFfakFmWRYmnT50zlZHw_X_cnFynClZYX6yRnlAym3pNyS-n-NPqvZQLI</recordid><startdate>20220804</startdate><enddate>20220804</enddate><creator>Matsumoto, Yuya</creator><general>American Mathematical Society</general><scope/><orcidid>https://orcid.org/0000-0002-7371-7956</orcidid></search><sort><creationdate>20220804</creationdate><title>μ p \mu _p - and α p \alpha _p -actions on K3 surfaces in characteristic p p</title><author>Matsumoto, Yuya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ams_primary_10_1090_jag_8043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Research article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matsumoto, Yuya</creatorcontrib><jtitle>Journal of algebraic geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matsumoto, Yuya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>μ p \mu _p - and α p \alpha _p -actions on K3 surfaces in characteristic p p</atitle><jtitle>Journal of algebraic geometry</jtitle><stitle>J. Algebraic Geom</stitle><date>2022-08-04</date><risdate>2022</risdate><volume>32</volume><issue>2</issue><spage>271</spage><epage>322</epage><pages>271-322</pages><issn>1056-3911</issn><eissn>1534-7486</eissn><abstract>We consider μp\mu _p- and αp\alpha _p-actions on RDP K3 surfaces (K3 surfaces with rational double point (RDP) singularities allowed) in characteristic p>0p > 0. We study possible characteristics, quotient surfaces, and quotient singularities. It turns out that these properties of μp\mu _p- and αp\alpha _p-actions are analogous to those of Z/lZ\mathbb {Z}/l\mathbb {Z}-actions (for primes l≠pl \neq p) and Z/pZ\mathbb {Z}/p\mathbb {Z}-quotients respectively. We also show that conversely an RDP K3 surface with a certain configuration of singularities admits a μp\mu _p- or αp\alpha _p- or Z/pZ\mathbb {Z}/p\mathbb {Z}-covering by a “K3-like” surface, which is often an RDP K3 surface but not always, as in the case of the canonical coverings of Enriques surfaces in characteristic 22.</abstract><cop>Providence, Rhode Island</cop><pub>American Mathematical Society</pub><doi>10.1090/jag/804</doi><orcidid>https://orcid.org/0000-0002-7371-7956</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1056-3911 |
ispartof | Journal of algebraic geometry, 2022-08, Vol.32 (2), p.271-322 |
issn | 1056-3911 1534-7486 |
language | eng |
recordid | cdi_ams_primary_10_1090_jag_804 |
source | American Mathematical Society Journals |
subjects | Research article |
title | μ p \mu _p - and α p \alpha _p -actions on K3 surfaces in characteristic p p |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T19%3A21%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%CE%BC%20p%20%5Cmu%20_p%20-%20and%20%CE%B1%20p%20%5Calpha%20_p%20-actions%20on%20K3%20surfaces%20in%20characteristic%20p%20p&rft.jtitle=Journal%20of%20algebraic%20geometry&rft.au=Matsumoto,%20Yuya&rft.date=2022-08-04&rft.volume=32&rft.issue=2&rft.spage=271&rft.epage=322&rft.pages=271-322&rft.issn=1056-3911&rft.eissn=1534-7486&rft_id=info:doi/10.1090/jag/804&rft_dat=%3Cams%3E10_1090_jag_804%3C/ams%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |