μ p \mu _p - and α p \alpha _p -actions on K3 surfaces in characteristic p p

We consider μp\mu _p- and αp\alpha _p-actions on RDP K3 surfaces (K3 surfaces with rational double point (RDP) singularities allowed) in characteristic p>0p > 0. We study possible characteristics, quotient surfaces, and quotient singularities. It turns out that these properties of μp\mu _p- an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algebraic geometry 2022-08, Vol.32 (2), p.271-322
1. Verfasser: Matsumoto, Yuya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider μp\mu _p- and αp\alpha _p-actions on RDP K3 surfaces (K3 surfaces with rational double point (RDP) singularities allowed) in characteristic p>0p > 0. We study possible characteristics, quotient surfaces, and quotient singularities. It turns out that these properties of μp\mu _p- and αp\alpha _p-actions are analogous to those of Z/lZ\mathbb {Z}/l\mathbb {Z}-actions (for primes l≠pl \neq p) and Z/pZ\mathbb {Z}/p\mathbb {Z}-quotients respectively. We also show that conversely an RDP K3 surface with a certain configuration of singularities admits a μp\mu _p- or αp\alpha _p- or Z/pZ\mathbb {Z}/p\mathbb {Z}-covering by a “K3-like” surface, which is often an RDP K3 surface but not always, as in the case of the canonical coverings of Enriques surfaces in characteristic 22.
ISSN:1056-3911
1534-7486
DOI:10.1090/jag/804