Local C^{1,\beta}-regularity at the boundary of two dimensional sliding almost minimal sets in \mathbb{R}^{3}

In this paper, we will give a C^{1,\beta }-regularity result on the boundary for two dimensional sliding almost minimal sets in \mathbb{R}^3. This effect may apply to the regularity of the soap films at the boundary, and may also lead to the existence of a solution to the Plateau problem with slidin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society. Series B 2021-02, Vol.8 (5), p.130
1. Verfasser: Yangqin Fang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we will give a C^{1,\beta }-regularity result on the boundary for two dimensional sliding almost minimal sets in \mathbb{R}^3. This effect may apply to the regularity of the soap films at the boundary, and may also lead to the existence of a solution to the Plateau problem with sliding boundary conditions proposed by Guy David in the case that the boundary is a 2-dimensional smooth submanifold.
ISSN:2330-0000
DOI:10.1090/btran/40