Higher order expansions for the probabilistic local Cauchy theory of the cubic nonlinear Schrödinger equation on \mathbb{R}^3

We consider the cubic nonlinear Schrödinger equation (NLS) on \mathbb{R}^3 with randomized initial data. In particular, we study an iterative approach based on a partial power series expansion in terms of the random initial data. By performing a fixed point argument around the second order expansion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society. Series B 2019-03, Vol.6 (4), p.114-160
Hauptverfasser: Bényi, Árpád, Oh, Tadahiro, Pocovnicu, Oana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 160
container_issue 4
container_start_page 114
container_title Transactions of the American Mathematical Society. Series B
container_volume 6
creator Bényi, Árpád
Oh, Tadahiro
Pocovnicu, Oana
description We consider the cubic nonlinear Schrödinger equation (NLS) on \mathbb{R}^3 with randomized initial data. In particular, we study an iterative approach based on a partial power series expansion in terms of the random initial data. By performing a fixed point argument around the second order expansion, we improve the regularity threshold for almost sure local well-posedness from our previous work. We further investigate a limitation of this iterative procedure. Finally, we introduce an alternative iterative approach, based on a modified expansion of arbitrary length, and prove almost sure local well-posedness of the cubic NLS in an almost optimal regularity range with respect to the original iterative approach based on a power series expansion.
doi_str_mv 10.1090/btran/29
format Article
fullrecord <record><control><sourceid>ams</sourceid><recordid>TN_cdi_ams_primary_10_1090_btran_29</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_btran_29</sourcerecordid><originalsourceid>FETCH-ams_primary_10_1090_btran_293</originalsourceid><addsrcrecordid>eNqNj9FKAzEQRYMgWLTgJwz0uW2yS7H7XJQ-Vx_FMEmzTSSbrJMsuIh-lj_gj5ktfoDDZWbgHi5cxm4FXwne8LXKhGFdNRdsVtU1X_IyV2ye0mt5hKg2d5vtjH3t3ckagkjHss17jyG5GBK0kSBbAz1Fhcp5l7LT4KNGDzsctB0nO9IIsT2DelAFCDF4FwwSPGpLP99HF05T8NuAueRC0XOH2Sr1cfh8qW_YZYs-mfnfvWaLh_un3X6JXZI9uQ5plILLqZE8N5JVU_-P-gVX2VWv</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Higher order expansions for the probabilistic local Cauchy theory of the cubic nonlinear Schrödinger equation on \mathbb{R}^3</title><source>DOAJ Directory of Open Access Journals</source><source>American Mathematical Society Publications (Freely Accessible)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bényi, Árpád ; Oh, Tadahiro ; Pocovnicu, Oana</creator><creatorcontrib>Bényi, Árpád ; Oh, Tadahiro ; Pocovnicu, Oana</creatorcontrib><description>We consider the cubic nonlinear Schrödinger equation (NLS) on \mathbb{R}^3 with randomized initial data. In particular, we study an iterative approach based on a partial power series expansion in terms of the random initial data. By performing a fixed point argument around the second order expansion, we improve the regularity threshold for almost sure local well-posedness from our previous work. We further investigate a limitation of this iterative procedure. Finally, we introduce an alternative iterative approach, based on a modified expansion of arbitrary length, and prove almost sure local well-posedness of the cubic NLS in an almost optimal regularity range with respect to the original iterative approach based on a power series expansion.</description><identifier>EISSN: 2330-0000</identifier><identifier>DOI: 10.1090/btran/29</identifier><language>eng</language><publisher>Providence, Rhode Island: American Mathematical Society</publisher><subject>Research article</subject><ispartof>Transactions of the American Mathematical Society. Series B, 2019-03, Vol.6 (4), p.114-160</ispartof><rights>Copyright 2019 by the authors under Creative Commons Attribution 3.0 License (CC BY 3.0)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-ams_primary_10_1090_btran_293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ams.org/btran/2019-06-04/S2330-0000-2019-00029-8/S2330-0000-2019-00029-8.pdf$$EPDF$$P50$$Gams$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ams.org/btran/2019-06-04/S2330-0000-2019-00029-8/$$EHTML$$P50$$Gams$$Hfree_for_read</linktohtml><link.rule.ids>69,314,776,780,860,23303,27901,27902,77807,77817</link.rule.ids></links><search><creatorcontrib>Bényi, Árpád</creatorcontrib><creatorcontrib>Oh, Tadahiro</creatorcontrib><creatorcontrib>Pocovnicu, Oana</creatorcontrib><title>Higher order expansions for the probabilistic local Cauchy theory of the cubic nonlinear Schrödinger equation on \mathbb{R}^3</title><title>Transactions of the American Mathematical Society. Series B</title><addtitle>Trans. Amer. Math. Soc. Ser. B</addtitle><description>We consider the cubic nonlinear Schrödinger equation (NLS) on \mathbb{R}^3 with randomized initial data. In particular, we study an iterative approach based on a partial power series expansion in terms of the random initial data. By performing a fixed point argument around the second order expansion, we improve the regularity threshold for almost sure local well-posedness from our previous work. We further investigate a limitation of this iterative procedure. Finally, we introduce an alternative iterative approach, based on a modified expansion of arbitrary length, and prove almost sure local well-posedness of the cubic NLS in an almost optimal regularity range with respect to the original iterative approach based on a power series expansion.</description><subject>Research article</subject><issn>2330-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqNj9FKAzEQRYMgWLTgJwz0uW2yS7H7XJQ-Vx_FMEmzTSSbrJMsuIh-lj_gj5ktfoDDZWbgHi5cxm4FXwne8LXKhGFdNRdsVtU1X_IyV2ye0mt5hKg2d5vtjH3t3ckagkjHss17jyG5GBK0kSBbAz1Fhcp5l7LT4KNGDzsctB0nO9IIsT2DelAFCDF4FwwSPGpLP99HF05T8NuAueRC0XOH2Sr1cfh8qW_YZYs-mfnfvWaLh_un3X6JXZI9uQ5plILLqZE8N5JVU_-P-gVX2VWv</recordid><startdate>20190304</startdate><enddate>20190304</enddate><creator>Bényi, Árpád</creator><creator>Oh, Tadahiro</creator><creator>Pocovnicu, Oana</creator><general>American Mathematical Society</general><scope/></search><sort><creationdate>20190304</creationdate><title>Higher order expansions for the probabilistic local Cauchy theory of the cubic nonlinear Schrödinger equation on \mathbb{R}^3</title><author>Bényi, Árpád ; Oh, Tadahiro ; Pocovnicu, Oana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ams_primary_10_1090_btran_293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Research article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bényi, Árpád</creatorcontrib><creatorcontrib>Oh, Tadahiro</creatorcontrib><creatorcontrib>Pocovnicu, Oana</creatorcontrib><jtitle>Transactions of the American Mathematical Society. Series B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bényi, Árpád</au><au>Oh, Tadahiro</au><au>Pocovnicu, Oana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Higher order expansions for the probabilistic local Cauchy theory of the cubic nonlinear Schrödinger equation on \mathbb{R}^3</atitle><jtitle>Transactions of the American Mathematical Society. Series B</jtitle><stitle>Trans. Amer. Math. Soc. Ser. B</stitle><date>2019-03-04</date><risdate>2019</risdate><volume>6</volume><issue>4</issue><spage>114</spage><epage>160</epage><pages>114-160</pages><eissn>2330-0000</eissn><abstract>We consider the cubic nonlinear Schrödinger equation (NLS) on \mathbb{R}^3 with randomized initial data. In particular, we study an iterative approach based on a partial power series expansion in terms of the random initial data. By performing a fixed point argument around the second order expansion, we improve the regularity threshold for almost sure local well-posedness from our previous work. We further investigate a limitation of this iterative procedure. Finally, we introduce an alternative iterative approach, based on a modified expansion of arbitrary length, and prove almost sure local well-posedness of the cubic NLS in an almost optimal regularity range with respect to the original iterative approach based on a power series expansion.</abstract><cop>Providence, Rhode Island</cop><pub>American Mathematical Society</pub><doi>10.1090/btran/29</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2330-0000
ispartof Transactions of the American Mathematical Society. Series B, 2019-03, Vol.6 (4), p.114-160
issn 2330-0000
language eng
recordid cdi_ams_primary_10_1090_btran_29
source DOAJ Directory of Open Access Journals; American Mathematical Society Publications (Freely Accessible); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Research article
title Higher order expansions for the probabilistic local Cauchy theory of the cubic nonlinear Schrödinger equation on \mathbb{R}^3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T20%3A16%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Higher%20order%20expansions%20for%20the%20probabilistic%20local%20Cauchy%20theory%20of%20the%20cubic%20nonlinear%20Schr%C3%B6dinger%20equation%20on%20%5Cmathbb%7BR%7D%5E3&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society.%20Series%20B&rft.au=B%C3%A9nyi,%20%C3%81rp%C3%A1d&rft.date=2019-03-04&rft.volume=6&rft.issue=4&rft.spage=114&rft.epage=160&rft.pages=114-160&rft.eissn=2330-0000&rft_id=info:doi/10.1090/btran/29&rft_dat=%3Cams%3E10_1090_btran_29%3C/ams%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true