Higher order expansions for the probabilistic local Cauchy theory of the cubic nonlinear Schrödinger equation on \mathbb{R}^3

We consider the cubic nonlinear Schrödinger equation (NLS) on \mathbb{R}^3 with randomized initial data. In particular, we study an iterative approach based on a partial power series expansion in terms of the random initial data. By performing a fixed point argument around the second order expansion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the American Mathematical Society. Series B 2019-03, Vol.6 (4), p.114-160
Hauptverfasser: Bényi, Árpád, Oh, Tadahiro, Pocovnicu, Oana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the cubic nonlinear Schrödinger equation (NLS) on \mathbb{R}^3 with randomized initial data. In particular, we study an iterative approach based on a partial power series expansion in terms of the random initial data. By performing a fixed point argument around the second order expansion, we improve the regularity threshold for almost sure local well-posedness from our previous work. We further investigate a limitation of this iterative procedure. Finally, we introduce an alternative iterative approach, based on a modified expansion of arbitrary length, and prove almost sure local well-posedness of the cubic NLS in an almost optimal regularity range with respect to the original iterative approach based on a power series expansion.
ISSN:2330-0000
DOI:10.1090/btran/29