Equivalence Between the Combined Approximations Technique and Krylov Subspace Methods

Research results show that the combined approximations (CA) technique proposed by Kirsch is a preconditioned Krylov subspace method. This connection enables a better understanding of why the CA technique will converge to the exact solution when the number of basis vectors is increased.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIAA journal 2002-05, Vol.40 (5), p.1021-1023
1. Verfasser: Nair, Prasanth B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1023
container_issue 5
container_start_page 1021
container_title AIAA journal
container_volume 40
creator Nair, Prasanth B
description Research results show that the combined approximations (CA) technique proposed by Kirsch is a preconditioned Krylov subspace method. This connection enables a better understanding of why the CA technique will converge to the exact solution when the number of basis vectors is increased.
doi_str_mv 10.2514/2.1747
format Article
fullrecord <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_aiaa_journals_2_1747_pdf_fulltext</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>118400272</sourcerecordid><originalsourceid>FETCH-LOGICAL-a402t-bda93ccee9eed6902230697b41d4f96f74f4bf43109f672234c6274aa7d69e903</originalsourceid><addsrcrecordid>eNp9kdlKxDAUhoMoOG7PUBSXm2qW08ZcjoMbKl6o4F1I0xOm0klr07q8vRkVFRGvQsjH9_85h5ANRvd5xuCA7zMJcoGMWCZEKg6z-0UyopSylEHGl8lKCA_xxuUhG5G748ehejI1eovJEfbPiD7pp5hMmllReSyTcdt2zUs1M33V-JDcop366nHAxPgyuehe6-YpuRmK0JpouMJ-2pRhjSw5Uwdc_zxXyd3J8e3kLL28Pj2fjC9TA5T3aVEaJaxFVIhlrijnguZKFsBKcCp3EhwUDgSjyuUyvoLNuQRjZKRRUbFKdj-8sWKsFHo9q4LFujYemyFoCTkHqjKI5M6_JJcxAIBFcPMX-NAMnY-_0DwOFDIVe3zZbNeE0KHTbRcn1L1qRvV8CZrr-RIiuP1pM8Ga2nXG2yp80yLPRKbm9fY-OFMZ8yPx3aLb0mk31HWPL31Et_5CfwW_AQe2nk4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215345922</pqid></control><display><type>article</type><title>Equivalence Between the Combined Approximations Technique and Krylov Subspace Methods</title><source>Alma/SFX Local Collection</source><creator>Nair, Prasanth B</creator><creatorcontrib>Nair, Prasanth B</creatorcontrib><description>Research results show that the combined approximations (CA) technique proposed by Kirsch is a preconditioned Krylov subspace method. This connection enables a better understanding of why the CA technique will converge to the exact solution when the number of basis vectors is increased.</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/2.1747</identifier><identifier>CODEN: AIAJAH</identifier><language>eng</language><publisher>Reston, VA: American Institute of Aeronautics and Astronautics</publisher><subject>Aerodynamics ; Convergence of numerical methods ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Perturbation techniques ; Physics ; Sensitivity analysis ; Solid mechanics ; Static elasticity ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics ; Topology ; Vectors</subject><ispartof>AIAA journal, 2002-05, Vol.40 (5), p.1021-1023</ispartof><rights>2002 INIST-CNRS</rights><rights>Copyright American Institute of Aeronautics and Astronautics May 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a402t-bda93ccee9eed6902230697b41d4f96f74f4bf43109f672234c6274aa7d69e903</citedby><cites>FETCH-LOGICAL-a402t-bda93ccee9eed6902230697b41d4f96f74f4bf43109f672234c6274aa7d69e903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13653594$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nair, Prasanth B</creatorcontrib><title>Equivalence Between the Combined Approximations Technique and Krylov Subspace Methods</title><title>AIAA journal</title><description>Research results show that the combined approximations (CA) technique proposed by Kirsch is a preconditioned Krylov subspace method. This connection enables a better understanding of why the CA technique will converge to the exact solution when the number of basis vectors is increased.</description><subject>Aerodynamics</subject><subject>Convergence of numerical methods</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Perturbation techniques</subject><subject>Physics</subject><subject>Sensitivity analysis</subject><subject>Solid mechanics</subject><subject>Static elasticity</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><subject>Topology</subject><subject>Vectors</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp9kdlKxDAUhoMoOG7PUBSXm2qW08ZcjoMbKl6o4F1I0xOm0klr07q8vRkVFRGvQsjH9_85h5ANRvd5xuCA7zMJcoGMWCZEKg6z-0UyopSylEHGl8lKCA_xxuUhG5G748ehejI1eovJEfbPiD7pp5hMmllReSyTcdt2zUs1M33V-JDcop366nHAxPgyuehe6-YpuRmK0JpouMJ-2pRhjSw5Uwdc_zxXyd3J8e3kLL28Pj2fjC9TA5T3aVEaJaxFVIhlrijnguZKFsBKcCp3EhwUDgSjyuUyvoLNuQRjZKRRUbFKdj-8sWKsFHo9q4LFujYemyFoCTkHqjKI5M6_JJcxAIBFcPMX-NAMnY-_0DwOFDIVe3zZbNeE0KHTbRcn1L1qRvV8CZrr-RIiuP1pM8Ga2nXG2yp80yLPRKbm9fY-OFMZ8yPx3aLb0mk31HWPL31Et_5CfwW_AQe2nk4</recordid><startdate>20020501</startdate><enddate>20020501</enddate><creator>Nair, Prasanth B</creator><general>American Institute of Aeronautics and Astronautics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>7TC</scope></search><sort><creationdate>20020501</creationdate><title>Equivalence Between the Combined Approximations Technique and Krylov Subspace Methods</title><author>Nair, Prasanth B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a402t-bda93ccee9eed6902230697b41d4f96f74f4bf43109f672234c6274aa7d69e903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Aerodynamics</topic><topic>Convergence of numerical methods</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Perturbation techniques</topic><topic>Physics</topic><topic>Sensitivity analysis</topic><topic>Solid mechanics</topic><topic>Static elasticity</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><topic>Topology</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nair, Prasanth B</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nair, Prasanth B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equivalence Between the Combined Approximations Technique and Krylov Subspace Methods</atitle><jtitle>AIAA journal</jtitle><date>2002-05-01</date><risdate>2002</risdate><volume>40</volume><issue>5</issue><spage>1021</spage><epage>1023</epage><pages>1021-1023</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><coden>AIAJAH</coden><abstract>Research results show that the combined approximations (CA) technique proposed by Kirsch is a preconditioned Krylov subspace method. This connection enables a better understanding of why the CA technique will converge to the exact solution when the number of basis vectors is increased.</abstract><cop>Reston, VA</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/2.1747</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1452
ispartof AIAA journal, 2002-05, Vol.40 (5), p.1021-1023
issn 0001-1452
1533-385X
language eng
recordid cdi_aiaa_journals_2_1747_pdf_fulltext
source Alma/SFX Local Collection
subjects Aerodynamics
Convergence of numerical methods
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Perturbation techniques
Physics
Sensitivity analysis
Solid mechanics
Static elasticity
Static elasticity (thermoelasticity...)
Structural and continuum mechanics
Topology
Vectors
title Equivalence Between the Combined Approximations Technique and Krylov Subspace Methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T03%3A07%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equivalence%20Between%20the%20Combined%20Approximations%20Technique%20and%20Krylov%20Subspace%20Methods&rft.jtitle=AIAA%20journal&rft.au=Nair,%20Prasanth%20B&rft.date=2002-05-01&rft.volume=40&rft.issue=5&rft.spage=1021&rft.epage=1023&rft.pages=1021-1023&rft.issn=0001-1452&rft.eissn=1533-385X&rft.coden=AIAJAH&rft_id=info:doi/10.2514/2.1747&rft_dat=%3Cproquest_aiaa_%3E118400272%3C/proquest_aiaa_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215345922&rft_id=info:pmid/&rfr_iscdi=true