Equivalence Between the Combined Approximations Technique and Krylov Subspace Methods
Research results show that the combined approximations (CA) technique proposed by Kirsch is a preconditioned Krylov subspace method. This connection enables a better understanding of why the CA technique will converge to the exact solution when the number of basis vectors is increased.
Gespeichert in:
Veröffentlicht in: | AIAA journal 2002-05, Vol.40 (5), p.1021-1023 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1023 |
---|---|
container_issue | 5 |
container_start_page | 1021 |
container_title | AIAA journal |
container_volume | 40 |
creator | Nair, Prasanth B |
description | Research results show that the combined approximations (CA) technique proposed by Kirsch is a preconditioned Krylov subspace method. This connection enables a better understanding of why the CA technique will converge to the exact solution when the number of basis vectors is increased. |
doi_str_mv | 10.2514/2.1747 |
format | Article |
fullrecord | <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_aiaa_journals_2_1747_pdf_fulltext</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>118400272</sourcerecordid><originalsourceid>FETCH-LOGICAL-a402t-bda93ccee9eed6902230697b41d4f96f74f4bf43109f672234c6274aa7d69e903</originalsourceid><addsrcrecordid>eNp9kdlKxDAUhoMoOG7PUBSXm2qW08ZcjoMbKl6o4F1I0xOm0klr07q8vRkVFRGvQsjH9_85h5ANRvd5xuCA7zMJcoGMWCZEKg6z-0UyopSylEHGl8lKCA_xxuUhG5G748ehejI1eovJEfbPiD7pp5hMmllReSyTcdt2zUs1M33V-JDcop366nHAxPgyuehe6-YpuRmK0JpouMJ-2pRhjSw5Uwdc_zxXyd3J8e3kLL28Pj2fjC9TA5T3aVEaJaxFVIhlrijnguZKFsBKcCp3EhwUDgSjyuUyvoLNuQRjZKRRUbFKdj-8sWKsFHo9q4LFujYemyFoCTkHqjKI5M6_JJcxAIBFcPMX-NAMnY-_0DwOFDIVe3zZbNeE0KHTbRcn1L1qRvV8CZrr-RIiuP1pM8Ga2nXG2yp80yLPRKbm9fY-OFMZ8yPx3aLb0mk31HWPL31Et_5CfwW_AQe2nk4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215345922</pqid></control><display><type>article</type><title>Equivalence Between the Combined Approximations Technique and Krylov Subspace Methods</title><source>Alma/SFX Local Collection</source><creator>Nair, Prasanth B</creator><creatorcontrib>Nair, Prasanth B</creatorcontrib><description>Research results show that the combined approximations (CA) technique proposed by Kirsch is a preconditioned Krylov subspace method. This connection enables a better understanding of why the CA technique will converge to the exact solution when the number of basis vectors is increased.</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/2.1747</identifier><identifier>CODEN: AIAJAH</identifier><language>eng</language><publisher>Reston, VA: American Institute of Aeronautics and Astronautics</publisher><subject>Aerodynamics ; Convergence of numerical methods ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Perturbation techniques ; Physics ; Sensitivity analysis ; Solid mechanics ; Static elasticity ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics ; Topology ; Vectors</subject><ispartof>AIAA journal, 2002-05, Vol.40 (5), p.1021-1023</ispartof><rights>2002 INIST-CNRS</rights><rights>Copyright American Institute of Aeronautics and Astronautics May 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a402t-bda93ccee9eed6902230697b41d4f96f74f4bf43109f672234c6274aa7d69e903</citedby><cites>FETCH-LOGICAL-a402t-bda93ccee9eed6902230697b41d4f96f74f4bf43109f672234c6274aa7d69e903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13653594$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nair, Prasanth B</creatorcontrib><title>Equivalence Between the Combined Approximations Technique and Krylov Subspace Methods</title><title>AIAA journal</title><description>Research results show that the combined approximations (CA) technique proposed by Kirsch is a preconditioned Krylov subspace method. This connection enables a better understanding of why the CA technique will converge to the exact solution when the number of basis vectors is increased.</description><subject>Aerodynamics</subject><subject>Convergence of numerical methods</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Perturbation techniques</subject><subject>Physics</subject><subject>Sensitivity analysis</subject><subject>Solid mechanics</subject><subject>Static elasticity</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><subject>Topology</subject><subject>Vectors</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp9kdlKxDAUhoMoOG7PUBSXm2qW08ZcjoMbKl6o4F1I0xOm0klr07q8vRkVFRGvQsjH9_85h5ANRvd5xuCA7zMJcoGMWCZEKg6z-0UyopSylEHGl8lKCA_xxuUhG5G748ehejI1eovJEfbPiD7pp5hMmllReSyTcdt2zUs1M33V-JDcop366nHAxPgyuehe6-YpuRmK0JpouMJ-2pRhjSw5Uwdc_zxXyd3J8e3kLL28Pj2fjC9TA5T3aVEaJaxFVIhlrijnguZKFsBKcCp3EhwUDgSjyuUyvoLNuQRjZKRRUbFKdj-8sWKsFHo9q4LFujYemyFoCTkHqjKI5M6_JJcxAIBFcPMX-NAMnY-_0DwOFDIVe3zZbNeE0KHTbRcn1L1qRvV8CZrr-RIiuP1pM8Ga2nXG2yp80yLPRKbm9fY-OFMZ8yPx3aLb0mk31HWPL31Et_5CfwW_AQe2nk4</recordid><startdate>20020501</startdate><enddate>20020501</enddate><creator>Nair, Prasanth B</creator><general>American Institute of Aeronautics and Astronautics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>7TC</scope></search><sort><creationdate>20020501</creationdate><title>Equivalence Between the Combined Approximations Technique and Krylov Subspace Methods</title><author>Nair, Prasanth B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a402t-bda93ccee9eed6902230697b41d4f96f74f4bf43109f672234c6274aa7d69e903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Aerodynamics</topic><topic>Convergence of numerical methods</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Perturbation techniques</topic><topic>Physics</topic><topic>Sensitivity analysis</topic><topic>Solid mechanics</topic><topic>Static elasticity</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><topic>Topology</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nair, Prasanth B</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nair, Prasanth B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equivalence Between the Combined Approximations Technique and Krylov Subspace Methods</atitle><jtitle>AIAA journal</jtitle><date>2002-05-01</date><risdate>2002</risdate><volume>40</volume><issue>5</issue><spage>1021</spage><epage>1023</epage><pages>1021-1023</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><coden>AIAJAH</coden><abstract>Research results show that the combined approximations (CA) technique proposed by Kirsch is a preconditioned Krylov subspace method. This connection enables a better understanding of why the CA technique will converge to the exact solution when the number of basis vectors is increased.</abstract><cop>Reston, VA</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/2.1747</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1452 |
ispartof | AIAA journal, 2002-05, Vol.40 (5), p.1021-1023 |
issn | 0001-1452 1533-385X |
language | eng |
recordid | cdi_aiaa_journals_2_1747_pdf_fulltext |
source | Alma/SFX Local Collection |
subjects | Aerodynamics Convergence of numerical methods Exact sciences and technology Fundamental areas of phenomenology (including applications) Perturbation techniques Physics Sensitivity analysis Solid mechanics Static elasticity Static elasticity (thermoelasticity...) Structural and continuum mechanics Topology Vectors |
title | Equivalence Between the Combined Approximations Technique and Krylov Subspace Methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T03%3A07%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equivalence%20Between%20the%20Combined%20Approximations%20Technique%20and%20Krylov%20Subspace%20Methods&rft.jtitle=AIAA%20journal&rft.au=Nair,%20Prasanth%20B&rft.date=2002-05-01&rft.volume=40&rft.issue=5&rft.spage=1021&rft.epage=1023&rft.pages=1021-1023&rft.issn=0001-1452&rft.eissn=1533-385X&rft.coden=AIAJAH&rft_id=info:doi/10.2514/2.1747&rft_dat=%3Cproquest_aiaa_%3E118400272%3C/proquest_aiaa_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215345922&rft_id=info:pmid/&rfr_iscdi=true |