Equivalence Between the Combined Approximations Technique and Krylov Subspace Methods
Research results show that the combined approximations (CA) technique proposed by Kirsch is a preconditioned Krylov subspace method. This connection enables a better understanding of why the CA technique will converge to the exact solution when the number of basis vectors is increased.
Gespeichert in:
Veröffentlicht in: | AIAA journal 2002-05, Vol.40 (5), p.1021-1023 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Research results show that the combined approximations (CA) technique proposed by Kirsch is a preconditioned Krylov subspace method. This connection enables a better understanding of why the CA technique will converge to the exact solution when the number of basis vectors is increased. |
---|---|
ISSN: | 0001-1452 1533-385X |
DOI: | 10.2514/2.1747 |