Deterministic and Reliability-Based Optimization of Composite Laminates for Cryogenic Environments

Designs of composite laminates are investigated for hydrogen tanks in cryogenic environments. Large residual strains, which can develop due to thermal mismatch between matrix and fibers, result in matrix cracking at cryogenic temperatures and increase hydrogen leakage through the tank wall. To reduc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIAA journal 2003-10, Vol.41 (10), p.2029-2036
Hauptverfasser: Qu, Xueyong, Haftka, Raphael T, Venkataraman, Satchi, Johnson, Theodore F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Designs of composite laminates are investigated for hydrogen tanks in cryogenic environments. Large residual strains, which can develop due to thermal mismatch between matrix and fibers, result in matrix cracking at cryogenic temperatures and increase hydrogen leakage through the tank wall. To reduce thermal mismatch, ply angles need to be close to each other, but this leads to a substantial weight increase under biaxial loading. First deterministic optimization is used to investigate possible weight reduction measures. Reducing axial loads on walls by auxiliary stiffening mechanisms led to significant weight reduction. Reliability-based optimizations were performed to identify the uncertainties in composite material properties with the largest influences on the optimum design. Then measures for reducing uncertainty in important parameters are examined. The results indicate that the most effective measure for reducing thickness is quality control.
ISSN:0001-1452
1533-385X
DOI:10.2514/2.1893