Low-Order Modeling of Dynamic Stall on Airfoils in Incompressible Flow
Airfoil dynamic stall in incompressible flow is characterized by two interacting viscous flow phenomena: time-varying trailing-edge separation and the shedding of intermittent leading-edge-vortex structures. In the current work, a physics based low-order method capable of modeling the interactions b...
Gespeichert in:
Veröffentlicht in: | AIAA journal 2023-01, Vol.61 (1), p.206-222 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Airfoil dynamic stall in incompressible flow is characterized by two interacting viscous flow phenomena: time-varying trailing-edge separation and the shedding of intermittent leading-edge-vortex structures. In the current work, a physics based low-order method capable of modeling the interactions between the two flow phenomena is developed with the aim of predicting dynamic stall with only a few empirical tuning parameters. Large computational datasets are used to understand the flow physics of unsteady airfoils so as to augment an inviscid, unsteady airfoil theory to model the time-dependent viscous effects. The resulting model requires only three empirical coefficients for a given airfoil and Reynolds number, which could be obtained from a single moderate-pitch-rate unsteady motion for that airfoil/Reynolds number combination. Results from the low-order model are shown to compare excellently with computational and experimental solutions, in terms of both aerodynamic loads and flow-pattern predictions. In addition to formulating a method with limited empirical dependencies, the current research provides valuable insights into the flow physics of unsteady airfoils and their connection to rapidly predictable theoretical parameters. |
---|---|
ISSN: | 0001-1452 1533-385X |
DOI: | 10.2514/1.J061595 |